Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Методологический подход к моделированию и прогнозированию воздействия пространственной неоднородности процессов распространения COVID-19 на экономическое развитие регионов России
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 629-648Статья посвящена исследованию социально-экономических последствий от вирусных эпидемий в условиях неоднородности экономического развития территориальных систем. Актуальность исследования обусловлена необходимостью поиска оперативных механизмов государственного управления и стабилизации неблагоприятной эпидемио-логической ситуации с учетом пространственной неоднородности распространения COVID-19, сопровождающейся концентрацией инфекции в крупных мегаполисах и на территориях с высокой экономической активностью.
Целью работы является разработка комплексного подхода к исследованию пространственной неоднородности распространения коронавирусной инфекции с точки зрения экономических последствий пандемии в регионах России. В работе особое внимание уделяется моделированию последствий ухудшающейся эпидемиологической ситуации на динамике экономического развития региональных систем, определению полюсов роста распространения коронавирусной инфекции, пространственных кластеров и зон их влияния с оценкой межтерриториальных взаимосвязей. Особенностью разработанного подхода является пространственная кластеризация региональных систем по уровню заболеваемости COVID-19, проведенная с использованием глобального и локальных индексов пространственной автокорреляции, различных матриц пространственных весов и матрицы взаимовлияния Л.Анселина на основе статистической информации Росстата. В результате проведенного исследования были выявлены пространственный кластер, отличающийся высоким уровнем инфицирования COVID-19 с сильной зоной влияния и устойчивыми межрегиональными взаимосвязями с окружающими регионами, а также сформировавшиеся полюса роста, которые являются потенциальными полюсами дальнейшего распространения коронавирусной инфекции. Проведенный в работе регрессионный анализ с использованием панельных данных позволил сформировать модель для сценарного прогнозирования последствий от распространения коронавирусной инфекции и принятия управленческих решений органами государственной власти.
В работе выявлено, что увеличение числа заболевших коронавирусной инфекцией влияет на сокращение среднесписочной численности работников, снижение средней начисленной заработной платы. Предложенный подход к моделированию последствий COVID-19 может быть расширен за счет использования полученных результатов исследования при проектировании агент-ориентированной моделей, которые позволят оценить средне- и долгосрочные социально-экономические последствия пандемии с точки зрения особенностей поведения различных групп населения. Проведение компьютерных экспериментов позволит воспроизвести социально-демографическая структуру населения и оценить различные ограничительные меры в регионах России и сформировать пространственные приоритеты поддержки населения и бизнеса в условиях пандемии. На основе предлагаемого методологического подхода может быть разработана агент-ориентированная модель в виде программного комплекса, предназначенного для системы поддержки принятия решений оперативным штабам, центрам мониторинга эпидемиологической ситуации, органам государственного управления на федеральном и региональном уровнях.
-
Моделирование динамики общественного внимания к протяженным процессам на примере пандемии COVID-19
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1131-1141Изучается динамика общественного внимания к эпидемии COVID-19 в ряде стран. При этом в качестве индикатора общественного внимания взято количество поисковых запросов в Google, сделанных в течение суток пользователями изданной страны. В эмпирической части работы рассмотрены данные относительно количества запросов и количества новых заболевших для ряда стран. Показано, что во всех рассмотренных странах максимум общественного внимания наступил ранее максимума количества новых зараженных за день. Тем самым обнаружено, что в течение некоторого периода времени рост эпидемии происходит параллельно со спадом общественного внимания к ней. Также показано, что спад количества запросов описывается экспоненциальной функцией времени. Для того чтобы описать выявленную эмпирическую зависимость, предложена математическая модель, представляющая собой модификацию модели спада внимания после одноразового политического события. Модель развивает подход, рассматривающий принятие решения индивидом как членом социума, в котором происходит информационный процесс. В рамках этого подхода предполагается, что решение индивида о том, делать ли в данный день поисковый запрос на тему COVID, формируется на основании двух факторов. Один изн их — это установка, отражающая долгосрочную заинтересованность индивида в данной теме и аккумулирующая предыдущий опыт индивида, его культурные предпочтения, социальное и экономическое положение. Второй — динамический фактор общественного внимания к данному процессу — изменяется в течение рассматриваемого процесса под влиянием информационных стимулов. Применительно к рассматриваемой тематике информационные стимулы связны с эпидемической динамикой. Пове- денческая гипотеза состоит в том, что если в некоторый день сумма установки и динамического фактора превышает некоторую пороговую величину, то в этот день индивид делает поисковый запрос на тему COVID. Общая логика состоит в том, что чем выше скорость роста числа заболевших, тем выше информационный стимул, тем медленнее убывает общественное внимание к пандемии. Таким образом, построенная модель позволила соотнести скорость экспоненциального убывания количества запросов со скоростью роста количества заболевших. Обнаруженная с помощью модели закономерность проверена на эмпирических данных. Получено, что статистика Стьюдента равна 4,56, что позволяет отклонить гипотезу об отсутствии корреляционной связи с уровнем значимости 0,01.
Ключевые слова: общественное внимание, COVID-19, инфодемия, математическая модель, количество поисковых запросов. -
Моделирование влияния распространения эпидемии и карантина на экономику
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 339-363Эпидемии серьезно дестабилизируют экономику, снижая производительность, ослабляя потребительскую активность и перегружая общественные ресурсы, что часто приводит к экономическим кризисам. Пандемия COVID-19 продемонстрировала ключевую роль нематериальных мер, таких как карантин, в сдерживании распространения инфекционных заболеваний. Данное исследование изучает, как развитие эпидемии и введение карантинных мер влияют на экономическое благополучие населения. С помощью компартментальных моделей на основе обыкновенных дифференциальных уравнений (ОДУ) анализируется взаимосвязь между динамикой заболевания и экономическими последствиями, особенно фокусируясь на том, как различные строгости карантина воздействуют как на распространение болезни, так и на благосостояние населения. Результаты показывают, что эпидемии наносят значительный экономический ущерб, однако своевременные и строгие карантинные меры могут снизить нагрузку на систему здравоохранения, резко уменьшая пик заражений и замедляя развитие эпидемии. Тем не менее, стратегически продуманное ослабление карантина не менее важно для предотвращения повторных вспышек. Исследование выявляет ключевые эпидемиологические пороговые значения, такие как скорость передачи, уровень выздоровления и базовое репродуктивное число $(\mathfrak{R}_0)$, которые определяют эффективность карантина. Аналитически определяется оптимальная доля изолированных лиц, необходимая для минимизации общего числа заражений в условиях постоянного иммунитета. С экономической точки зрения, влияние карантина оценивается через динамику благосостояния населения: показано, что экономические последствия зависят от доли изолированных, но сохраняющих экономическую активность граждан. Чем выше эта доля, тем лучше сохраняется благосостояние даже при фиксированных эпидемиологических параметрах. Эти выводы предоставляют властям практические рекомендации для разработки сбалансированных карантинных стратегий, способных сдерживать распространение болезней и одновременно защищать экономическую стабильность в будущих кризисах.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"