Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'эксперимент':
Найдено статей: 273
  1. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
  7. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 5-7
  8. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 175-177
  9. Матюшкин И.В., Заплетина М.А.
    Компьютерное исследование голоморфной динамики экспоненциального и линейно-экспоненциального отображений
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 383-405

    Работа принадлежит направлению экспериментальной математики, исследующей свойства математических объектов вычислительными средствами компьютера. Базовым отображением служит экспоненциальное, топологические свойства (букеты Кантора) которого отличаются от свойств полиномиальных и рациональных функций на комплексной плоскости. Предметом исследования являются характер и особенности множеств Фату и Жюлиа, а также точек равновесия и орбит нуля трех итерированных комплекснозначных отображений: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, где $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. Для квазилинейного отображения g, не обладающего свойством аналитичности, было обнаружено два бифуркационных перехода: рождение новой точки равновесия (для него было найдено критическое значение параметра, а сама бифуркация представляет собой смешанный случай «вилки» и седлоузельного перехода) и переход к радикальной трансформации множества Фату. Выявлен нетривиальный характер сходимости к фиксированной точке, связанный с появлением «долин» на графике скоростей сходимости. Для двух других отображений существенна монопериодичность режимов, отмечен феномен «удвоения периода» (в одном случае по пути $39\to 3$, в другом — по пути $17\to 2$), причем обнаружено совпадение кратности периода и числа рукавов спирали множества Жюлиа в окрестности фиксированной точки. Приведен богатый иллюстративный материал, численные результаты экспериментов и сводные таблицы, отражающие параметрическую зависимость отображений. Сформулированы вопросы для дальнейшего исследования средствами традиционной математики.

    Просмотров за год: 51. Цитирований: 1 (РИНЦ).
  10. Алкуса М.С.
    О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217

    Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.

    Просмотров за год: 42.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.