Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование одномерных нелинейных пульсовых волн в эластичных сосудах на основе решеточных уравнений Больцмана
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 707-722Просмотров за год: 2.В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.
В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.
В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.
-
Суррогатная нейросетевая модель для восстановления поля течения в серийных расчетах стационарных турбулентных течений с разрешением пристенной области
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1195-1216При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.
Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.
-
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"