Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обучение с подкреплением при оптимизации параметров торговой стратегии на финансовых рынках
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1793-1812Высокочастотная алгоритмическая торговля — это подкласс трейдинга, ориентированный на получение прибыли на субсекундных временных интервалах. Такие торговые стратегии не зависят от большинства факторов, подходящих для долгосрочной торговли, и требуют особого подхода. Было много попыток использовать методы машинного обучения как для высоко-, так и для низкочастотной торговли. Однако они по-прежнему имеют ограниченное применение на практике из-за высокой подверженности переобучению, требований к быстрой адаптации к новым режимам рынка и общей нестабильности результатов. Мы провели комплексное исследование по сочетанию известных количественных теорий и методов обучения с подкреплением, чтобы вывести более эффективный и надежный подход при построении автоматизированной торговой системы в попытке создать поддержку для известных алгоритмических торговых техник. Используя классические теории поведения цен, а также современные примеры применения в субмиллисекундной торговле, мы применили модели обучения с усилением для улучшения качества алгоритмов. В результате мы создали надежную модель, использующую глубокое обучение с усилением для оптимизации параметров статических торговых алгоритмов, способных к онлайн-обучению на живых данных. Более конкретно, мы исследовали систему на срочном криптовалютном рынке, который в основном не зависит от внешних факторов в краткосрочной перспективе. Наше исследование было реализовано в высокочастотной среде, и итоговые модели показали способность работать в рамках принятых таймфреймов высокочастотной торговли. Мы сравнили различные комбинации подходов глубинного обучения с подкреплением и классических алгоритмов и оценили устойчивость и эффективность улучшений для каждой комбинации.
Ключевые слова: обучение с подкреплением, алгоритмическая торговля, высокочастотная торговля, маркет-мейкинг. -
Моделирование поведения опционов. Формулировка проблемы
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 759-766Объектом исследований является создание алгоритма для расчета цен большого числа опционов с целью формирования безрискового портфеля. Метод базируется на обобщении подхода Блэка–Шоулза. Задача состоит в моделировании поведения всех опционов, а также инструментов их страхования. Для данной задачи характерен большой объем параллельных вычислений, которые требуется производить в режиме реального времени. Проблематика исследования: в зависимости от исходных данных используются разные подходы к решению. Существует три метода, которые могут использоваться при разных условиях: конечно-разностный метод, метод функционального интегрирования и метод, который связан с остановкой торгов на рынке. Распределенные вычисления в каждом из этих случаев организуются по- разному и требуют использования различных подходов. Сложность задачи также связана с тем, что в литературе ее математическая постановка не является корректной. Отсутствует полное описание граничных и начальных условий, а также некоторые предположения, лежащие в основе модели, не соответствуют реальным условиям рынка. Необходимо дать математически корректную постановку задачи и убрать несоответствие между предположениями модели и реальным рынком. Для этих целей необходимо расширить стандартную постановку за счет дополнительных методов и улучшить методы реализации для каждого направления решения задачи.
Ключевые слова: финансовая математика, ценообразование опционов, азиатский опцион, корректная постановка, граничные условия.Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"