Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'уравнения':
Найдено статей: 431
  1. Плетнев Н.В., Двуреченский П.Е., Гасников А.В.
    Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 417-444

    Статья посвящена изучению применения методов выпуклой оптимизации для решения задачи Коши для уравнения Гельмгольца, которая является некорректной, поскольку уравнение относится к эллиптическому типу. Задача Коши формулируется как обратная задача и сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал и его градиент вычисляются с помощью решения краевых задач, которые, в свою очередь, корректны и могут быть приближенно решены стандартными численными методами, такими как конечно-разностные схемы и разложения в ряды Фурье. Экспериментально исследуются сходимость применяемого быстрого градиентного метода и качество получаемого таким образом решения. Эксперимент показывает, что ускоренный градиентный метод — метод подобных треугольников — сходится быстрее, чем неускоренный метод. Сформулированы и доказаны теоремы о вычислительной сложности полученных алгоритмов. Установлено, что разложения в ряды Фурье превосходят конечно-разностные схемы по скорости вычислений и улучшают качество получаемого решения. Сделана попытка использовать рестарты метода подобных треугольников после уменьшения невязки функционала вдвое. В этом случае сходимость не улучшается, что подтверждает отсутствие сильной выпуклости. Эксперименты показывают, что неточность вычислений более адекватно описывается аддитивной концепцией шума в оракуле первого порядка. Этот фактор ограничивает достижимое качество решения, но ошибка не накапливается. Полученные результаты показывают, что использование ускоренных градиентных методов оптимизации позволяет эффективно решать обратные задачи.

  2. Никитин И.С., Никитин А.Д.
    Мультирежимная модель и численный алгоритм расчета квазитрещин различного типа при циклическом нагружении
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 873-885

    На основе мультирежимной двухкритериальной модели усталостного разрушения предложен метод расчета зарождения и развития узкихлок ализованных зон поврежденности в образцах и элементах конструкций для различных режимов циклического нагружения. Такие узкие зоны повреждаемости можно рассматривать как квазитрещины двухтипов, соответствующих механизму нормального отрыва и сдвига. Проведена верификация модели путем численных экспериментов по воспроизведению левыхи правыхв етвей усталостных кривых для образцов из титановыхи алюминиевых сплавов, построенных по испытаниям при различных условиях и схемах циклического нагружения. Приведены примеры моделирования развития квазитрещин двухтипов (нормального отрыва и сдвига) при различных режимах циклического нагружения пластины с отверстием в качестве концентратора напряжений. При сложном напряженном состоянии в предлагаемой комплексной модели возможна естественная реализация любого из рассмотренных механизмов развития квазитрещин. Квазитрещины разных типов могут развиваться в разных частях образца, в том числе одновременно.

  3. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  4. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

  5. Токарев А.А., Бутылин А.А., Атауллаханов Ф.И.
    Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200

    Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.

    Просмотров за год: 3. Цитирований: 8 (РИНЦ).
  6. Шпитонков М.И.
    Применение методики корреляционной адаптометрии в спортивных и медико-биологических исследованиях
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 345-354

    В работе излагаются подходы к математическому моделированию механизмов, лежащих в основе широко используемых в биологии и медицине методов корреляционной адаптометрии. Построение базируется на конструкциях, лежащих в основе описания структурированных биологических систем. Предполагается, что плотность распределения численности биологической популяции удовлетворяет уравнению Колмогорова–Фоккера–Планка. С использованием данной методики оценивается эффективность лечения больных с ожирением. Все пациенты, в зависимости от степени ожирения и характера сопутствующей патологии, были разделены на три группы. Показано уменьшение веса корреляционного графа, вычисленного на измеренных у пациентов показателях для трех групп пациентов, что характеризует эффективность проведенного лечения для всех исследуемых групп. Данная методика также была использована для оценки напряженности тренировочных нагрузок у гребцов академической гребли трех возрастных групп. Было показано, что с наибольшим напряжением работали спортсмены молодежной группы. Также с использованием методики корреляционной адаптометрии оценивается эффективность лечения заместительной гормональной терапии (ЗГТ) у женщин. Все пациентки, в зависимости от назначенного препарата, были разделены на четыре группы. При стандартном анализе динамики средних величин показателей было показано, что в ходе всего лечения наблюдалась нормализация средних показателей для всех групп пациенток. Однако с использованием методики корреляционной адаптометрии было получено, что в течение первых шести месяцев вес корреляционного графа снижался, а в течение вторых шести месяцев этот вес повышался для всех исследуемых групп. Это свидетельствует о чрезмерной продолжительности годового курса ЗГТ и целесообразности перехода к полугодовому курсу.

    Просмотров за год: 10.
  7. Лобанов А.И., Миров Ф.Х.
    Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164

    Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.

    В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.

    Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.

  8. Шиняева Т.С.
    Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499

    Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.

  9. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

  10. Варшавский L.Е.
    Исследование динамики структуры олигополистических рынков при нерыночных противодействиях сторон
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 219-233

    В статье исследуется влияние нерыночных действий участников олигополистических рынков на рыночную структуру. Анализируются следующие действия одного из участников рынка, направленные на повышение его рыночной доли: 1) манипуляция ценами; 2) блокировка инвестиций более сильных олигополистов; 3) уничтожение производственной продукции и мощностей конкурентов. Для моделирования стратегий олигополистов используются линейные динамические игры с квадратичным критерием. Целесообразность их использования обусловлена возможностью как адекватного описания эволюции рынков, так и реализации двух взаимно дополняющих подходов к определению стратегий олигополистов: 1) подхода, основанного на представлении моделей в пространстве состояний и решении обобщенных уравнений Риккати; 2) подхода, основанного на применении методов операционного исчисления (в частотной области) и обладающего необходимой для экономического анализа наглядностью.

    В статье показывается эквивалентность подходов к решению задачи с максиминными критериями олигополистов в пространстве состояний и в частотной области. Рассматриваются результаты расчетов применительно к дуополии, с показателями, близкими к одной из дуополий в микроэлектронной промышленности мира. Второй дуополист является менее эффективным с позиций затрат, хотя и менее инерционным. Его цель состоит в повышении своей рыночной доли путем реализации перечисленных выше нерыночных методов.

    На основе расчетов по игровой модели построены зависимости, характеризующие связь относи- тельного увеличения объемов производства за 25-летний период слабого $dy_2$ и сильного $dy_1$ дуополистов при манипуляции ценами. Показано, что увеличение цены при принятой линейной функции спроса приводит к весьма незначительному росту производства сильного дуополиста, но вместе с тем — к существенному росту этого показателя у слабого.

    В то же время блокировка инвестиций, а также уничтожение продукции сильного дуополиста приводят к росту объемов производства товарной продукции у слабого дуополиста за счет снижения этого показателя у сильного, причем эластичность $\frac{y_2}{dy_1}$ превышает по модулю 1.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.