Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'уравнения':
Найдено статей: 451
  1. Акиндинов Г.Д., Матюхин В.В., Криворотько О.И.
    Численное решение обратной задачи для уравнения гиперболической теплопроводности с малым параметром
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 245-258

    В данной работе приведен алгоритм численного решения обратной начально-краевой задачи для гиперболического уравнения с малым параметром перед второй производной по времени, которая состоит в нахождении начального распределения по заданному конечному. Данный алгоритм позволяет для заданной наперед точности получить решение задачи (в допустимых пределах точности). Данный алгоритм позволяет избежать сложностей, аналогичных случаю с уравнением теплопроводности с обращенным временем. Предложенный алгоритм позволяет подобрать оптимальный размер конечно-разностной схемы путем обучения на относительно больших разбиениях сетки и малом числе итераций градиентного метода. Предложенный алгоритм позволяет получить оценку для константы Липшица градиента целевого функционала. Также представлен способ оптимального выбора малого параметра при второй производной для ускорения решения задачи. Данный подход может быть применен и в других задачах с похожей структурой, например в решении уравнений состояния плазмы, в социальных процессах или в различных биологических задачах. Новизна данной работы заключается в разработке оптимальной процедуры выбора размера шага путем применения экстраполяции Ричардсона и обучения на малых размерах сетки для решения задач оптимизации с неточным градиентом в обратных задачах.

  2. Аксенов А.А., Александрова Н.А., Будников А.В., Жестков М.Н., Сазонова М.Л., Кочетков М.А.
    Моделирование LES-подходом в ПК FlowVision турбулентного перемешивания разнотемпературных потоков в T-образном трубопроводе
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 827-843

    В работе представлены результаты численного моделирования в программном комплексе FlowVision турбулентного перемешивания потоков воды разнойтемпер атуры в Т-образной трубе. В статье детально описан экспериментальный стенд, специально спроектированный с целью получения простых для большинства программных комплексов вычислительной гидродинамики граничных условий. По результатам испытаний получены значения осредненных во времени температур и скоростей в контрольных датчиках и плоскостях. В статье представлена используемая при расчете система дифференциальных уравнений в частных производных, описывающая процесс тепломассопереноса в жидкости с использованием модели турбулентности Смагоринского. Указаны граничные условия, посредством которых задаются случайные пульсации скорости на входе в расчетную область. Моделирование выполнено на различных расчетных сетках, для которых оси глобальной системы координат совпадают с направлениями потоков горячей и холодной воды. Для ПК FlowVision показана возможность построения расчетной сетки в процессе моделирования на основании изменения параметров течения. Оценено влияние подобного алгоритма построения расчетной сетки на результаты расчетов. Приведены результаты расчетов на диагональной сетке с использованием скошенной схемы (направление координатных линий не совпадает с направлением осей труб тройника). Показана высокая эффективность скошенной схемы при моделировании потоков, генеральные направления которых не совпадают с гранями расчетных ячеек. Проведено сравнение результатов моделирования на различных расчетных сетках. По результатам численного моделирования в ПК FlowVision получены распределения осредненных по времени скорости и температуры воды в контрольных сечениях и датчиках. Представлено сравнение численных результатов, полученных в ПК FlowVision, с экспериментальными данными и расчетами, выполненными с использованием других вычислительных программ. Результаты моделирования турбулентного перемешивания потока воды разной температуры в ПК FlowVision ближе к экспериментальным данным в сравнении с расчетами в CFX ANSYS. Показано, что применение LES-модели турбулентности на сравнительно небольших расчетных сетках в ПК FlowVision позволяет получать результаты с погрешностью в пределах 5 %.

  3. Аристова Е.Н., Караваева Н.И.
    Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448

    Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.

  4. Уткин П.С., Чупров П.А.
    Численное моделирование распространения зондирующих импульсов в плотной засыпке гранулированной среды
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1361-1384

    Необходимость моделирования высокоскоростных течений сжимаемых сред с ударными волнами при наличии плотных завес или слоев частиц со значительным объемным содержанием дисперсной фазы возникает при изучении различных процессов. В качестве примера можно привести диспергирование частиц из слоя за проходящей ударной волной или распространение волн горения в компактных зарядах гетерогенных взрывчатых веществ. Хотя данные направления успешно развиваются в течение последних нескольких десятков лет, соответствующие математические модели и вычислительные алгоритмы активно совершенствуются вплоть до настоящего времени, поскольку механизмы волновых процессов в двухфазной среде, реализующиеся в различных моделях, отличаются друг от друга.

    Статья посвящена численному исследованию распространения возмущений внутри плотной засыпки песка, вызванных последовательным воздействием ударной волны, падающей по нормали к поверхности засыпки из воздуха. Постановка задачи следует натурным опытам А.Т. Ахметова с соавторами. Целью работы является объяснение возможных причин усиления сигнала на датчике давления внутри засыпки, которое наблюдается в опытах при некоторых условиях. Математическая модель основана на одномерной системе уравнений Баера – Нунциато для описания плотных течений двухфазных сред с учетом межгранулярных напряжений в фазе частиц. Вычислительный алгоритм основан на методе Годунова для уравнений Баера – Нунциато.

    В статье описана волновая динамика вне засыпки частици внутри нее после воздействия на засыпку первого и второго импульсов давления из газа. Основными элементами течения внутри засыпки являются фильтрационная волна в газовой фазе и волна компактирования в фазе частиц. В результате интерференции волны компактирования, вызванной первым падающим импульсом давления и отраженной от стенки ударной трубы, и фильтрационной волны, вызванной вторым падающим импульсом, происходит усиление сигнала на датчике давления внутри засыпки. Таким образом, дано возможное объяснение данного нового эффекта, наблюдаемого в натурных экспериментах.

  5. Килин А.А., Артемова Е.М., Гаврилова А.М.
    Странный репеллер в динамике эллиптического профиля с присоединенным вихрем в идеальной жидкости
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1051-1067

    В данной работе рассматривается задача о плоскопараллельном движении эллиптического профиля с присоединенным точечным вихрем постоянной интенсивности в идеальной жидкости. Положение вихря относительно профиля считается неизменным во время движения. Течение жидкости вне тела считается потенциальным (за исключением особенности, соответствующей точечному вихрю), а обтекание тела является безциркуляционным. Рассмотрен случай общего положения, когда точечный вихрь не лежит на продолжениях полуосей эллипса. Рассматриваемая задача описывается системой шести дифференциальных уравнений первого порядка. После редукции по группе движений плоскости $E(2)$ она сводится к системе трех дифференциальных уравнений. В работе исследуется данная редуцированная система. Показано, что эта система допускает от одной до пяти неподвижных точек, которым соответствуют движения эллипса по разным окружностям. Основываясь на численных исследованиях фазового потока приведенной системы вблизи неподвижных точек, показано, что рассматриваемая система в общем случае не допускает инвариантной меры с гладкой положительно определенной плотностью. Найдены значения параметров, при которых одна из неподвижных точек редуцированной системы является неустойчивым узлофокусом. Показано, что при продолжении по параметрам из неустойчивой неподвижной точки через бифуркацию Андронова – Хопфа может родиться неустойчивый предельный цикл. В работе исследованы бифуркации данного предельного цикла при изменении положения точечного вихря относительно эллипса. С помощью построения параметрической бифуркационной диаграммы показано, что при изменении параметров системы предельный цикл претерпевает каскад бифуркаций удвоения периода, в результате которого рождается хаотический репеллер (аттрактор в обратном времени). Для численного анализа задачи использовался метод построения двумерного отображения Пуанкаре. Для поиска и анализа простых и странных репеллеров исследование проводилось в обратном времени.

  6. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Численное моделирование популяционной 2D-динамики с нелокальным взаимодействием
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 33-40

    Получены численные решения двумерного реакционно-диффузионного уравнения с нелокальной нелинейностью, описывающие формирование диссипативной структуры. Рассмотрены структуры, возникающие из начальных распределений с одним и несколькими центрами локализации. При изменении параметров уравнения решения описывают формирование расширяющихся кольцевых структур. Рассмотрены особенности образования и взаимодействия расширяющихся кольцеобразных структур в зависимости от характера нелокального взаимодействия.

    Просмотров за год: 3. Цитирований: 5 (РИНЦ).
  7. Усенко В.А., Лобанов А.И.
    Метод потоковой релаксации для решения квазилинейных уравнений параболического типа
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 47-53

    Предложен численный метод решения квазилинейных уравнений параболического типа, основанный на аппроксимации потоков. Описана реализация метода на прямоугольной сетке. Приведены результаты численных расчетов. В отличие от применяемых методов для данного метода используется аппроксимация потоков на нерасширенном шаблоне. Для каждой итерации метода Ньютона возможно решение линейной задачи с помощью метода верхней релаксации (SOR). По сравнению с методами потоковой прогонки рассмотренный метод обладает большим потенциалом для использования на современных параллельных вычислительных комплексах.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  8. Ветчанин Е.В., Тененев В.А.
    Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381

    Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.

    Просмотров за год: 2. Цитирований: 16 (РИНЦ).
  9. Чернов И.А., Маничева С.В.
    Сопряженные сеточные параболические квазилинейные краевые задачи
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 275-291

    В работе построены сопряженные задачи для явной и неявной параболической квазилинейной сеточной пространственно-одномерной краевой задачи: коэффициенты задачи зависят от решения в текущий и предыдущие моменты времени. Зависимость от предыстории осуществляется через вектор состояния, эволюция которого описывается дифференциальным уравнением. К подобным задачам сводятся многие модели диффузионного массопереноса. Решения исходной и сопряженной краевых задач дают возможность получить точное значение градиента некоторого функционала в пространстве параметров, от которых также зависят коэффициенты задачи. Предложены алгоритмы решения задач, в том числе с использованием высокопроизводительных вычислительных систем.

    Просмотров за год: 1.
  10. Екомасов Е.Г., Гумеров А.М., Муртазин Р.Р.
    О возбуждении солитонов при взаимодействии кинков уравнения синус-Гордона с притягивающей примесью
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 509-520

    Исследованы аналитически и численно структура и свойства локализованных двух- и трех-кинковых решений уравнения синус-Гордона, возбуждаемых в области притягивающей примеси. Рассмотрены случаи одиночной и двойной пространственно протяженной примеси.

    Цитирований: 5 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.