Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'уравнение непрерывности':
Найдено статей: 45
  1. Сорокин К.Э., Бывальцев П.М., Аксенов А.А., Жлуктов С.В., Савицкий Д.В., Бабулин А.А., Шевяков В.И.
    Численное моделирование обледенения в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 83-96

    Процедура сертификации самолетов транспортной категории для полетов в условиях обледенения требует проведения расчетов форм и размеров ледяных наростов, образующихся на поверхностях самолетов в различные моменты времени. В настоящее время отсутствует программный продукт российской разработки, предназначенный для численного моделирования обледенения, признанный российскими сертификационными органами. В данной работе описывается методика расчета обледенения самолетов IceVision, созданная на базе программного комплекса FlowVision.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume Of Fluid (VOF — объем жидкости в ячейке) для отслеживания нарастания льда. В этой методике решается нестационарная задача непрерывного нарастания льда в эйлеровой постановке. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В других (известных из литературы) подходах изменение формы льда учитывается путем модификации аэродинамической поверхности с использованием лагранжевой сетки, а для учета теплоотдачи в лед используется некоторая эмпирическая модель.

    Реализованная во FlowVision математическая модель предполагает возможность моделирования сухого и влажного режимов обледенения. Модель автоматически определяет зоны сухого и влажного льда. В сухой зоне температура контактной поверхности определяется с учетом сублимации льда и теплопереноса во льду. Во влажной зоне учитывается течение водяной пленки по поверхности льда. Пленка замерзает за счет испарения, теплоотдачи в лед и в воздух. Методика IceVision учитывает отрыв пленки. Для моделирования двухфазного течения воздуха и капель используется многоскоростная модель взаимопроникающих континуумов в рамках эйлерова подхода. Методика IceVision учитывает распределение капель по размерам. Численный алгоритм учитывает существенное различие временных масштабов физических процессов, сопровождающих обледенение самолета: двухфазного внешнего течения (воздуха и капель), течения водяной пленки, роста льда. В работе приводятся результаты решения тестовых задач, демонстрирующие эффективность методики IceVision и достоверность результатов FlowVision.

  2. Бессонов Н.М., Бочаров Г.А., Бушнита А., Вольперт В.А.
    Гибридные модели в биомедицинских приложениях
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309

    В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.

    Просмотров за год: 25.
  3. Королев С.А., Майков Д.В.
    Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367

    В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.

    Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.

    В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.

  4. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  5. Конюхов И.В., Конюхов В.М., Черница А.А., Дюсенова А.
    Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636

    Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.

  6. Махов С.А.
    Долгосрочная макромодель мировой динамики на основе эмпирических данных
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 883-891

    В работе обсуждаются методические основы и проблемы моделирования мировой динамики. Излагаются подходы к построению новой имитационной модели глобального развития и первичные результаты моделирования. В основу построения модели положен эмпирический подход, основанный на анализе статистики основных социально-экономических показателей. На основании этого анализа выделены основные переменные. Для этих переменных составлены динамические уравнениянепрерывно-дифференциальной форме). Связи между переменными подбирались исходя из динамики соответствующих показателей в прошлом и на основании экспертных оценок, при этом использовались эконометрические методы, основанные на регрессионном анализе. Были проведены расчеты по полученной системе динамических уравнений, результаты представлены в виде пучка траекторий для тех показателей, которые непосредственно наблюдаемы и по которым имеется статистика. Таким образом, имеется возможность оценить разброс траекторий и понять прогнозные возможности представленной модели.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  7. Фоновая социальная напряженность общества может быть количественно оценена по различным статистическим индикаторам. Модели, прогнозирующие динамику социальной напряженности, успешно применяются для описания различных социальных процессов. Когда количество рассматриваемых групп общества мало, динамику соответствующих индикаторов можно описать при помощи системы обыкновенных дифференциальных уравнений. При увеличении количества взаимодействующих элементов резко возрастает сложность задач, что существенно затрудняет их аналитическое исследование. Модель сплошной социальной стратификации получаетсяв результате перехода от дискретной цепочки взаимодействующих социальных слоев к их непрерывному распределению на некотором интервале, то есть перехода к модели сплошной среды. В этом случае напряженность распространяется локально, но в действительности элита общества влияет на все слои через средства массовой информации, а также интернет позволяет влиять всем группам на другие. Эти факторы можно учесть через слагаемое модели, описывающее негативное внешнее воздействие. В настоящей работе предложена модель сплошной социальной стратификации, описывающая динамику системы из двух социумов, связанных через процесс миграции населения. Предполагается, что из социального слоя системы-донора с наибольшей напряженностью происходит отток людей, переносящих свою напряженность в систему-акцептор, причем при миграции люди попадают в более бедные слои принимающего общества. Рассматриваетсяслуч ай пространственно однородных коэффициентов, что соответствует частному случаю небольшого социума. При помощи метода конечных объемов построена пространственнаяди скретизация задачи, корректно отражающая конечную скорость распространения напряженности в обществе. Выполнена проверка выбранной дискретизации путем сравненияч исленного решения с точными решениями вспомогательного уравнения нелинейной диффузии. Проведено численное исследование системы с миграцией при различных значениях параметров, проанализировано влияние интенсивности миграции на принимающее общество, найдены условия дестабилизации общества акцептора под влиянием миграции. Полученные в работе результаты могут быть применены при дальнейшем исследовании модели в случае пространственно неоднородных коэффициентов, что соответствует более реалистичной картине общества.

  8. В работе исследуется дискретная модификация модели А.П. Михайлова «власть – общество», ранее предложенная автором. Эта модификация основана на стохастическом клеточном автомате, то есть имеет микродинамику, принципиально отличную от базовой непрерывной, основанной на дифференциальных уравнениях модели. При этом макродинамика дискретной модификации, как показано в предыдущих работах, совпадает с макродинамикой исходной модели. Этот важный результат, однако, вызывает вопрос, в чем смысл использования дискретной модели. Ее главной особенностью является гибкость, позволяющая добавлять в рассмотрение самые разные факторы, учет которых в непрерывной модели либо приводит к существенному росту вычислительной сложности, либо в принципе невозможен.

    В данной работе рассматриваются несколько примеров подобного расширения области применимости модели, при помощи которого решается ряд прикладных задач.

    Одна из модификаций модели учитывает экономические связи между регионами и муниципалитетами, что не могло быть исследовано в базовой модели. Вычислительные эксперименты подтвердили улучшение социально-экономических показателей системы при наличии таких связей.

    Вторая модификация включает в себя возможность внутренней миграции в системе. С ее помощью был получен ряд результатов, связанных с социально-экономическим развитием более благополучного региона, притягивающего мигрантов.

    Кроме этого, была исследована динамика системы при изменении количества регионов и муниципалитетов в системе. Показано негативное влияние этого процесса на социально-экономические показатели системы и найдено возможное управление, имеющее целью преодоление этого негативного влияния.

    Результатами данного исследования, таким образом, явились как решение отдельных прикладных задач, так и демонстрация на их примере более широких возможностей дискретной модели по сравнению с базовой непрерывной.

  9. Будянский А.В., Цибулин В.Г.
    Моделирование пространственно-временной миграции близкородственных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 477-488

    Рассматривается модель распространения по ареалу конкурирующих за единый ресурс близкородственных популяций, записываемая в виде системы уравнений параболического типа. Анализируется случай переменной диффузии с миграционными потоками, зависящими от неравномерности распределения популяций и ресурсов. На основе метода прямых исследовано влияние миграции на формирование распределений популяций, изучены сценарии локального вытеснения и сосуществования видов. Найдены условия на параметры системы, при которых возникает непрерывное косимметричное семейство равновесий.

    Просмотров за год: 6. Цитирований: 9 (РИНЦ).
  10. Епифанов А.В., Цибулин В.Г.
    О динамике косимметричных систем хищников и жертв
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813

    Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.

    Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.

    Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.

    Просмотров за год: 12. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.