Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'упругость':
Найдено статей: 64
  1. Черняев А.П., Черняева С.А.
    Особенности численных решений некоторых задач для кноидальной волны как периодического решения уравнения Кортевега – де Фриза
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 885-901

    В данной статье рассмотрены особенности численных решений некоторых задач для кноидальных волн, которые являются периодическими решениями классического уравнения Кортевега – де Фриза типа бегущей волны. Точные решения, описывающие эти волны, получены путемс ведения автоволновым приближением уравнения Кортевега – де Фриза к обыкновенным дифференциальным уравнениям сначала третьего, затем второго и, наконец, первого порядков. Обращение к числовому примеру показывает, что полученные такимо бразом обыкновенные дифференциальные уравнения не являются равносильными. Сформулированная и доказанная в настоящей статье теорема и замечание к ней показывают, что множество решений уравнения третьего порядка самое широкое и в качестве подмножеств включает в себя множества решений уравнений первого и второго порядков, которые в свою очередь равносильными не являются. Полученное автоволновым приближением обыкновенное дифференциальное уравнение первого порядка является источником для нахождения точных формул для описания кноидальной волны (периодического решения) и солитона (уединенной волны). Несмотря на это, с вычислительной точки зрения это уравнение является самым неудобным. Для этого уравнения не выполняется условие Липшица по искомой функции в окрестности постоянных решений. Отсюда теорема о существовании и единственности решения задачи Коши для обыкновенного дифференциального уравнения первого порядка не является справедливой. В частности, в стационарных точках нарушается единственность решения задачи Коши. Поэтому для обыкновенного дифференциального уравнения первого порядка, полученного из уравнения Кортевега – де Фриза, и в случае кноидальной волны, и в случае солитона задачу Коши нельзя ставить в точках экстремума. Начальное условие может быть поставлено лишь в точке убывания или роста, а отрезок численного решения необходимо выбрать так, чтобы он лежал между соседними точками экстремума. Но для уравнений второго и третьего порядков начальные условия можно ставить как в точках убывания или роста, так и в точках экстремума. При этом отрезок для численного решения сильно расширяется и наблюдается периодичность. Для решений этих обыкновенных уравнений изучаются постановки задач Коши, проводится сравнение полученных результатов с точными решениями и между собой. Показана численная реализация перерождения кноидальной волны в солитон. Результаты статьи имеют гемодинамическую интерпретацию пульсационного течения кровотока в цилиндрическом кровеносном сосуде, состоящем из упругих колец.

  2. Власенко В.Д., Верхотуров А.Д.
    Численное исследование упругих и прочностных характеристик материалов с покрытиями, полученных электроискровым легированием
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 671-678

    В работе численно исследовано влияние упругих и прочностных характеристик твердосплавных материалов с покрытиями из тугоплавких соединений, полученных электроискровым легированием, при воздействии температурных и силовых факторов при помощи метода конечных элементов.

    Просмотров за год: 3. Цитирований: 5 (РИНЦ).
  3. Грачев В.А., Найштут Ю.С.
    Задачи устойчивости тонких упругих оболочек
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 775-787

    В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.

    В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.

    Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.

    Просмотров за год: 23.
  4. В статье рассматривается модель антропоморфного механизма типа экзоскелета со звеньями переменной длины. Комплексно рассмотрены четыре модели звеньев переменной длины: модель звена экзоскелета переменной длины с упругим элементом и абсолютно твердым весомым стержнем, модель телескопического звена; модель звена с массами в шарнирах-суставах и между ними, модель звена с произвольным количеством масс. Составлены дифференциальные уравнения движения в форме уравнений Лагранжа второго рода. На основе проведенного анализа дифференциальных уравнений движения для многозвенных стержневых механических систем типа экзосклета выявлена их структура, позволившая представить их в векторно-матричном виде. Впервые установлены общие закономерности построения матриц и получены обобщения выражений для элементов матриц в двухмерном случае. Приводятся новые рекуррентный и матричный методы составления дифференциальных уравнений движения. Предлагается единый подход к построению дифференциальных уравнений движения экзоскелета на основе разработанных рекуррентного и матричного методов записи дифференциальных уравнений движения экзоскелета. Проведено сопоставление времени составления дифференциальных уравнений движения предложенными методами, в сравнении с уравнениями Лагранжа второго рода, в системе компьютерной математики Mathematica. Осуществлено аналитическое исследование модели экзоскелета. Установлено, что для механизмов с $n$ подвижными звеньями решение задачи Коши для систем дифференциальных уравнений движения при любых начальных условиях существует, единственно и неограниченно продолжаемо. Управление экзоскелетом осуществляется с помощью крутящих моментов, расположенных в шарнирах-суставах в местах соединения звеньев и моделирующих управляющие воздействия. Выполнено численное исследование модели экзоскелета, проведено сопоставление результатов расчетов для экзоскелетов с различными моделями звеньев. Для численного исследования использованы эмпирические данные о человеке и его движениях. Установлено, что при выборе конструкции экзоскелета модель с сосредоточенными массами является предпочтительной, нежели модель с абсолютно твердым весомым стержнем, так как экзоскелет, обеспечивающий комфортабельные передвижения человека в нем, должен повторять свойства опорно-двигательного аппарата.

    Просмотров за год: 15. Цитирований: 2 (РИНЦ).
  5. Джинчвелашвили Г.А., Дзержинский Р.И., Денисенкова Н.Н.
    Количественные оценки сейсмического риска и энергетические концепции сейсмостойкого строительства
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 61-76

    В настоящее время сейсмостойкое проектирование зданий основано на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием упругих спектров реакций (линейно-спектральный метод), связывающих закон движения грунта с абсолютным ускорением модели в виде нелинейного осциллятора.

    Такой подход непосредственно не учитывает ни влияния длительности сильных движений, ни пластического поведения конструкции. Частотный состав и продолжительность колебаний грунта напрямую влияют на энергию, поступившую в сооружение и вызывающую повреждение его элементов. В отличие от силового или кинематического расчета сейсмическое воздействие на конструкцию можно интерпретировать, не рассматривая отдельно силы или перемещения, а представить как произведение обеих величин, т. е. работу или входную энергию (максимальную энергию, которую может приобрести сооружение в результате землетрясения).

    При энергетическом подходе сейсмического проектирования необходимо оценить входную сейсмическую энергию в сооружение и ее распределение среди различных структурных компонентов.

    В статье приводится обоснование энергетического подхода при проектировании сейсмостойких зданий и сооружений взамен применяемого в настоящее время метода, основанного на силовом расчете и представлении эффекта землетрясения статическими эквивалентными силами, которые рассчитываются с использованием спектров реакции.

    Отмечено, что интерес к использованию энергетических концепций в сейсмостойком проектировании начался с работ Хаузнера, который представил сейсмические силы в виде входной сейсмической энергии, используя спектр скоростей, и предложил считать, что повреждения в упругопластической системе, как и в упругой системе, вызывает одна и та же входная сейсмическая энергия.

    В работе приведены индексы определения входной энергии землетрясения, предложенные различными авторами. Показано, что современные подходы обеспечения сейсмостойкости сооружений, основанные на представлении эффекта землетрясения как статической эквивалентной силы, недостаточно адекватно описывают поведение системы во время землетрясения.

    В статье предлагается новый подход количественных оценок сейсмического риска, позволяющий формализовать процесс принятия решений относительно антисейсмических мероприятий. На основе количественных оценок сейсмического риска анализируется разработанный в НИУ МГСУ Стандарт организации (СТО) «Сейсмостойкость сооружений. Основные расчетные положения». В разработанном документе сделан шаг вперед в отношении оптимального проектирования сейсмостойких конструкций.

    В предлагаемой концепции используются достижения современных методов расчета зданий и сооружений на сейсмические воздействия, которые гармонизированы с Еврокодом и не противоречат системе отечественных нормативных документов.

    Просмотров за год: 21.
  6. Тарасов А.Э., Сердобинцев Е.В.
    Моделирование движения рельсового экипажа в кривой в Simpack Rail
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 249-263

    В статье рассматривается определение одного из показателей динамических качеств (ПДК) железнодорожного подвижного состава — поперечного ускорения кузова — с использованием системы компьютерного моделирования динамики рельсовых экипажей Simpack Rail на комплексном уровне с переменной скоростью движения в графиковом режиме. Для этой цели использована ранее верифицированная с помощью средств кафедры «Электропоезда и локомотивы» РУТ (МИИТ) модель секции типового грузового электровоза колеи 1520 мм. По этой причине вопросы, связанные с построением и проверкой модели электровоза в препроцессоре, в данной статье опускаются. Подробно описано моделирование железнодорожного пути на основе картографических эксплуатационных данных — плана, профиля и возвышения наружного рельса. Приводятся статистические параметры (моменты) выбранной геометрической неровности (источника возмущения) по каждой рельсовой нити, а также параметры плана и профиля выбранного для моделирования участка пути в виде графиков считанных файлов данных. Измерение непогашенного поперечного ускорения кузова производится с учетом горизонтальной составляющей от действия силы тяжести, что воспроизводит принцип работы реальных датчиков измерения ускорения со свободно расположенной массой. В заключение производится сравнение искомого ПДК, определенного по методу среднего значения абсолютного максимума из смоделированного нестационарного процесса со значением, полученным из экспериментальных данных. По результатам сравнения можно сделать вывод о том, что на данный показатель качества с внешней стороны прежде всего влияют скорость и геометрические характеристики рельсового пути, которые в данном случае были смоделированы в строгом соответствии с картографическими данными реального железнодорожного участка, где проводились испытания. Допущенные условности в модели транспортного средства — секции грузового электровоза (сосредоточение инерционно-массовых характеристик тел в центре их тяжести, малость перемещений между телами) — при соблюдении постоянства основных геометрических и упруго-диссипативных характеристик связей тел позволяют в Simpack Rail смоделировать поведение (отклики) системы с необходимой достоверностью.

    Просмотров за год: 20.
  7. Грачев В.А., Найштут Ю.С.
    Деформирование жесткопластических тел с памятью формы при переменных нагрузках и температуре
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 63-77

    Деформирование сплошных сред из материалов с памятью формы под влиянием возрастающей нагрузки и при постоянной температуре протекает обычным для металлов идеальным упругопластическим образом. При этом величина максимальных упругих деформаций много меньше предельных пластических. Восстановление формы происходит при повышенной температуре и невысоком уровне напряжений. Феноменологически «обратное» деформирование аналогично с точностью до знака изменению формыпри активном загружении силами. Так как в неупругом процессе решающую роль играет пластическая деформация, то анализ механического поведения целесообразно провести в рамках идеальной жесткопластической модели с двумя поверхностями нагружения. В этой модели поверхностям нагружения отвечают два физических состояния материала: пластическое течение при высоких напряжениях и плавление при сравнительно невысокой температуре. Во втором параграфе формулируется задача деформирования жесткопластических сред при постоянной температуре в двух формах: в виде принципа виртуальных скоростей с условием текучести Мизеса и как требование минимальности диссипативного функционала. Доказываются равносильность принятых формулировок и существование обобщенных решений в обоих принципах. В третьем параграфе изучается жесткопластическая модель сплошной среды при изменяющейся температуре с двумя поверхностями нагружения. Для принятой модели формулируются два оптимальных принципа, связывающих внешние нагрузки и скорости перемещений точек среды как при активном нагружении, так и в процессе восстановления формыпр и нагревании. Доказано существование обобщенных скоростей для широкого класса трехмерных областей. Связь вариационных принципов и изменяющейся температуры обеспечивается включением в расчетную схему первого и второго начал термодинамики. Существенно, что в процессе доказательств используется только феноменологическое описание явления. Аустенитно-мартенситные превращения сплавов, которые часто являются основными при объяснении механического поведения материалов с памятью формы, не используются. В четвертом параграфе дано определение материалов с памятью формы как сплошных сред с двумя поверхностями нагружения, доказано существование решений в принятых ограничениях. Показана адекватность модели и опытов по деформированию материалов с памятью формы. В заключении формулируются математические задачи, которые представляются интересными в будущих исследованиях.

  8. Попова А.А., Попов В.С.
    Моделирование нелинейных аэроупругих колебаний стенки канала, взаимодействующей с пульсирующим слоем вязкого газа
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 583-600

    В работе предложена математическая модель аэроупругих колебаний стенки узкого канала, имеющей нелинейно-упругий подвес и взаимодействующей с пульсирующим слоем вязкого газа. В рамках данной модели определены и исследованы аэроупругий отклик стенки канала и соответствующий ему фазовый сдвиг. Сформулированная авторами модель позволяет одновременно исследовать влияние на колебания стенки нелинейной жесткости ее упругого подвеса, сжимаемости и диссипативных свойств газа, а также инерции его движения в канале под действием пульсирующего перепада давления. Модель разработана на базе постановки и решения плоской начально-краевой задачи математической физики, включающей систему уравнений динамики баротропного вязкого газа, уравнения динамики жесткой стенки как одномассового нелинейного осциллятора. Используя метод возмущений, проведен асимптотический анализ задачи с последующим решением уравнений динамики тонкого слоя вязкого газа методом итерации. В результате определен закон распределения давления газа в канале и исходная задача аэроупругости сведена к исследованию обобщенного уравнения Дуффинга. Его решение осуществлено методом гармонического баланса, что позволило определить аэроупругий и фазовый отклики стенки канала в виде неявных функций. Проведено численное исследование данных откликов для оценки влияния инерции движения газа и его сжимаемости, а также сравнение полученных результатов с частными случаями ползущего движения вязкого газа и несжимаемой вязкой жидкости. Результаты проведенного исследования показали важность одновременного учета сжимаемости и инерции движения вязкого газа при моделировании аэроупругих колебаний стенки рассматриваемого канала.

  9. Бураго Н.Г., Никитин И.С.
    Алгоритмы сквозного счета для процессов разрушения
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666

    В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.

    Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.

    Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.

    Просмотров за год: 24.
  10. Фаворская А.В.
    Исследование свойств материала пластины лазерным ультразвуком при помощи анализа кратных волн
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 653-673

    Ультразвуковое исследование свойств материалов является прецизионным методом определения их упругих и прочностных свойств в связи с маленькой по сравнению с толщиной пластины длиной волны, образующейся в материале после воздействия лазерным пучком. В данной работе подробно рассмотрены волновые процессы, возникающие в ходе проведения этих измерений. Показано, что полноволновое численное моделирование позволяет детально изучать типы волн, геометрические характеристики их профиля, скорость прихода волн в различные точки, выявлять типы волн, измерения по которым оптимальны для исследований образца с заданными материалом и формой, разрабатывать методики измерений.

    Для осуществления полноволнового моделирования в данной работе был применен сеточно-характеристический метод на структурированных сетках и решалась гиперболическая система уравнений, описывающая распространение упругих волн в материале рассматриваемой пластины конечной толщины на конкретном примере отношения толщины к ширине 1:10.

    Для моделирования упругого фронта, возникшего в пластине от воздействия лазерного пучка, предложена соответствующая постановка задачи. Выполнено сравнение возникающих при ее использовании волновых эффектов со случаем точечного источника и с данными физических экспериментов о распространении лазерного ультразвука в металлических пластинах.

    Проведено исследование, на основании которого были выявлены характерные геометрические особенности рассматриваемых волновых процессов. Исследованы основные типы упругих волн, возникающие в процессе воздействия лазерного пучка, проанализирована возможность их использования для исследования свойств материалов и предложен метод, основанный на анализе кратных волн. Проведено тестирование предложенного метода по изучению свойств пластины при помощи кратных волн на синтетических данных, показавшее хорошие результаты.

    Следует отметить, что большая часть исследований кратных волн направлена на разработку методов их подавления. Кратные волны не используются для обработки результатов ультразвуковых исследований в связи со сложностью их выявления в регистрируемых данных физического эксперимента.

    За счет применения полноволнового моделирования и анализа пространственных динамических волновых процессов в данной работе кратные волны рассмотрены подробно и предложено деление материалов на три класса, позволяющее использовать кратные волны для получения информации о материале пластины.

    Основными результатами работы являются разработанные постановки задачи для численного моделирования исследования пластин конечной толщины лазерным ультразвуком; выявленные особенности волновых явлений, возникающих в пластинах конечной толщины; разработанная методика исследования свойств пластины на основе кратных волн; разработанная классификация материалов.

    Результаты исследований, приведенные в настоящей работе, могут быть интересны для разработок не только в области ультразвуковых исследований материалов, но и в области сейсмической разведки земных недр, так как предложенный подход может быть расширен на более сложные случаи гетерогенных сред и применен в геофизике.

    Просмотров за год: 3.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.