Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'скорость':
Найдено статей: 285
  1. Базарова А.И., Безносиков А.Н., Гасников А.В.
    Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255

    Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.

    В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.

    Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.

    Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.

  2. В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.

  3. Описано развитие метода расщепления по физическим факторам для исследования течений несжимаемой жидкости (МЕРАНЖ), прошедшее за последние 50 лет. Гибридная явная конечно-разностная схема метода основана на модифицированной схеме с центральными разностями (МСЦР) и модифицированной схеме с ориентированными разностями (MСОР) со специальным условием переключения в зависимости от знака скорости переноса и знаков первой и второй разностей переносимых функций. Показано применение данного метода для решения некоторых задач (пространственный поток около сферы и кругового цилиндра для случаев однородной и стратифицированной жидкостей в широком диапазоне безразмерных параметров задачи, включая переходные режимы обтекания (2D–3D-переход, ламинарно-турбулентный переход в пограничном слое); плоскостная задача течения жидкости со свободной поверхностью; динамика вихревой пары в воде; коллапс пятен в стратифицированной жидкости; моделирование воздухо-, тепло- и массопереноса в «чистых производственных помещениях»).

  4. Григорьева А.В., Максименко М.В.
    Метод обработки данных акустико-эмиссионного контроля для определения скорости и локации каждого сигнала
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1029-1040

    Акустико-эмиссионный метод неразрушающего контроля является одним из эффективных и экономичных способов обследования сосудов высокого давления для поиска в них скрытых дефектов (трещин, расслоений и др.), а также единственным методом, чувствительным к развивающимся дефектам. Скорость распространения звука в объекте контроля и ее адекватное определение в локационной схеме имеют важнейшее значение для точности локации источника акустической эмиссии. Предложенный в статье метод обработки данных акустической эмиссии позволяет определить координаты источника и наиболее вероятную скорость для каждого сигнала. Метод включает в себя предварительную фильтрацию данных по амплитуде, по разности времен прихода, исключение электромагнитных помех. Далее к ним применяется комплекс численных методов для решения получившихся нелинейных уравнений, в частности метод Ньютона–Канторовича и общий итерационный процесс. Скорость распространения сигнала от одного источника принимается постоянной во всех направлениях. В качестве начального приближения берется центр тяжести треугольника, образованного первыми тремя датчиками, зафиксировавшими сигнал. Разработанный метод имеет важное практическое применение, и в статье приведен пример его апробации при калибровке акустико- эмиссионной системы на производственном объекте (абсорбере очистки углеводородного газа). Описаны критерии предварительной фильтрации данных. Полученные локации хорошо согласуются с местоположениями генерации сигналов, а вычисленные скорости четко отражают разделение акустической волны на волны Лэмба и Рэлея благодаря разноудаленности источников сигналов от датчиков. В статье построен график соответствия усредненной скорости сигнала и расстояния от его источника до ближайшего датчика. Основным достоинством разработанного метода можно считать его способность вычислять и отображать на общей схеме объекта местоположение сигналов, имеющих разные скорости, а не задавать единую скорость для всех сигналов акустической эмиссии в рамках одного расчета. Это позволяет увеличить степень свободы при вычислениях и тем самым увеличить их точность.

  5. Мелешко Е.В., Афанасенко Т.С., Гаджимирзаев Ш.М., Пашков Р.А., Гиля-Зетинов А.А., Цыбулько Е.А., Зайцева А.С., Хельвас А.В.
    Дискретное моделирование процесса восстановительного ремонта участка дороги
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1255-1268

    Работа содержит описание результатов моделирования процесса поддержания готовности участка дорожной сети в условиях воздействия с заданными параметрами. Рассматривается одномерный участок дороги длиной до 40 км с общим количеством ударов до 100 в течение рабочей смены бригады.

    Разработана имитационная модель проведения работ по его поддержанию в рабочем состоянии несколькими группами (инженерными бригадами), входящими в состав инженерно-дорожного подразделения. Для поиска точек появления заграждений используется беспилотный летательный аппарат мультикоптерного типа.

    Разработаны схемы жизненных циклов основных участников тактической сцены и построена событийно управляемая модель тактической сцены. Предложен формат журнала событий, формируемого в результате имитационного моделирования процесса поддержания участка дороги.

    Для визуализации процесса поддержания готовности участка дороги предложено использовать визуализацию в формате циклограммы. Разработан стиль для построения циклограммы на основе журнала событий.

    В качестве алгоритма принятия решения по назначению заграждений бригадам принят простейший алгоритм, предписывающий выбирать ближайшее заграждение.

    Предложен критерий, описывающий эффективность работ по поддержанию участка на основе оценки средней скорости движения транспортов по участку дороги.

    Построены графики зависимости значения критерия и среднеквадратичной ошибки в зависимости от длины поддерживаемого участка и получена оценка для максимальной протяженности дорожного участка, поддерживаемого в состоянии готовности с заданными значениями для выбранного показателя качества при заданных характеристика нанесения ударов и производительности ремонтных бригад. Показана целесообразность проведения работ по поддержанию готовности несколькими бригадами, входящими в состав инженерно-дорожного подразделения, действующими автономно.

    Проанализировано влияние скорости беспилотного летательного аппарата на возможности по поддержанию готовности участка. Рассмотрен диапазон скоростей от 10 до 70 км/ч, что соответствует техническим возможностям разведывательных беспилотных летательных аппаратов мультикоптерного типа.

    Результаты моделирования могут быть использованы в составе комплексной имитационной модели армейской наступательной или оборонительной операции и при решении задачи оптимизации назначения задач по поддержанию готовности участков дорог инженерно-дорожными бригадами. Предложенный подход может представлять интерес при разработке игр-стратегий военной направленности.

  6. Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами, в которой в явном виде выделяются члены, линейно зависящие от координат, скоростей и ускорений; нелинейные члены записываются в виде неявных функций от этих переменных. Для численного решения начальной задачи, описываемой такой системой дифференциальных уравнений, используется одношаговый метод Галёркина. На шаге интегрирования неизвестные функции представляются в виде суммы линейных функций, удовлетворяющих начальным условиям, и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближенно по методу Галёркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые на каждом шаге решаются методом итераций. Из решения в конце каждого шага определяются начальные условия на следующем шаге.

    Корректирующие функции берутся одинаковыми для всех шагов. В общем случае для расчетов на больших интервалах времени используются 4 или 5 корректирующих функций: в первом наборе — базовые степенные функции от 2-й до 4-й или 5-й степеней; во втором наборе — образованные из базовых функций ортогональные степенные полиномы; в третьем наборе — образованные из базовых функций специальные линейно независимые многочлены с конечными условиями, упрощающими «стыковку» решений на следующих шагах.

    На двух примерах расчета нелинейных колебаний систем с одной и с двумя степенями свободы выполнены численные исследования точности численного решения начальных задач на различных интервалах времени по методу Галёркина с использованием указанных наборов степенных корректирующих функций. Выполнены сравнения результатов, полученных по методу Галёркина и по методам Адамса и Рунге – Кутты четвертого порядка. Показано, что методом Галёркина можно получить достоверные результатына значительно больших интервалах времени, чем по методам Адамса и Рунге – Кутты.

  7. Небаба С.Г., Марков Н.Г.
    Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631

    Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.

  8. Денисенко В.В., Фортова С.В., Лебедев В.В., Колоколов И.В.
    Численное моделирование обратного влияния полимерной примеси на колмогоровское течение
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1093-1105

    Предложен численный метод, аппроксимирующий уравнения динамики слабосжимаемого вязкого течения при наличии полимерной составляющей потока. Исследуется поведение течения под воздействием статической внешней периодической силы в периодической квадратной ячейке. Методика основывается на гибридном подходе. Гидродинамика течения описывается системой уравнений Навье – Стокса и численно аппроксимируется линеаризованным методом Годунова. Полимерное поле описывается системой уравнений для вектора растяжений полимерных молекул $\bf R$, которая численно аппроксимируются методом Курганова – Тедмора. Выбор модельных соотношений при разработке численной методики и подбор параметров моделирования позволили на качественном уровне смоделировать и исследовать режим эластической турбулентности при низких числах Рейнольдса $Re \sim 10^{-1}$. Уравнения динамики течения полимерного раствора отличаются от уравнений динамики ньютоновской жидкости наличием в правой части членов, описывающих силы, действующие со стороны полимерной компоненты. Коэффициент пропорциональности $A$ при данных членах характеризует степень обратного влияния количества полимеров на поток. В статье подробно исследуется влияние этого коэффициента на структуру и характеристики потока. Показано, что с его ростом течение становится более хаотическим. Построены энергетические спектры полученных течений и спектры полей растяжения полимеров для различных величин коэффициента $A$. В спектрах прослеживается инерциальный поддиапа- зон энергетического каскада для скорости течения с показателем $k \sim −4$, для каскада растяжений полимерных молекул с показателем $−1,6$.

  9. Абгарян К.К., Журавлев А.А., Загордан Н.Л., Ревизников Д.Л.
    Дискретно-элементное моделирование внедрения шара в массивную преграду
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 71-79

    Дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных частиц, применена к задаче внедрения металлических шаров в массивные преграды. Для описания взаимодействия между частицами использовался двухпараметрический потенциал Леннарда–Джонса. Компьютерная реализация модели осуществлена с использованием распараллеливания вычислений на графических процессорах, что позволило добиться высокого пространственно-временного разрешения. На основе сравнения результатов компьютерного моделирования с экспериментальными данными идентифицирована зависимость энергии межчастичной связи от динамической твердости материалов. Показано, что использование данного подхода позволяет достаточно точно описать процесс внедрения ударника в преграду в диапазоне скоростей взаимодействия 500–2500 м/c.

    Просмотров за год: 5. Цитирований: 5 (РИНЦ).
  10. В данной работе представлены результаты верификации исследований гидродинамических воздействий на возвращаемый аппарат сегментально-конической формы при посадке на воду. Для анализа используется программный комплекс FlowVision. Целью работы является подтверждение возможности использования данного программного комплекса для решения поставленных задач на основе сравнения расчетных и экспериментальных данных, полученных на моделях посадочного модуля корабля Apollo и возвращаемого аппарата пилотируемого транспортного корабля нового поколения, разрабатываемого в РКК «Энергия». Сравнивались значения давлений на поверхности моделей аппаратов в процессе погружения в воду и параметры движения центра масс.

    Показано хорошее согласование экспериментальных и расчетных данных по силовому действию на конструкцию аппарата при приводнении и параметрам его движения в водной среде. Компьютерное моделирование адекватно отражает влияние на процесс приводнения начальных скоростей и углов входа аппарата в водную среду.

    Использование компьютерного моделирования обеспечивает одновременное определение всей информации, необходимой для исследования в процессе проектирования изделия особенностей посадки на воду: гидродинамические воздействия для расчета прочности конструкции, параметры и динамику движения центра масс и вращения аппарата вокруг центра масс с целью оценки условий приводнения экипажа, а также остойчивость аппарата после приводнения.

    Полученные результаты подтверждают необходимость использования программного комплекса FlowVision для исследования процесса приводнения аппарата и исследований влияния различных режимов посадки в широком диапазоне изменения начальных условий, что позволяет существенно сократить объём дорогостоящих экспериментальных исследований и реализовать условия посадки, трудновоспроизводимые в физическом эксперименте.

    Просмотров за год: 10.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.