Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.
-
Эффективная обработка и классификация энергетических спектров морского волнения на основе распределенного вычислительного конвейера
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 517-520Просмотров за год: 3. Цитирований: 2 (РИНЦ).Обработка больших массивов данных обычно происходит в несколько последовательно выполняемых этапов, таких как пред- и постобработка, после каждого из которых промежуточные данные записываются на диск; однако, для каждой задачи этап предварительной обработки может отличаться, и в таком случае непосредственная передача данных по вычислительному конвейеру от одного этапа (звена) к другому бу- дет более эффективным с точки зрения производительности решением. В более общем случае некоторые этапы можно разделить на параллельные части, сформировав таким образом распределенный вычислительный конвейер, каждое звено которого может иметь несколько входов и выходов. Такой принцип обработки данных применяется в задаче о классификации энергетических спектров морского волнения, которая основана на аппроксимациях, позволяющих извлекать параметры отдельных систем волн (тип волн, генеральное направление волн и т. п.). Система, построенная на этом принципе показывает более высокую производительность по сравнению с часто применяемой поэтапной обработкой данных.
-
Ресурсный центр обработки данных уровня Tier-1 в национальном исследовательском центре «Курчатовский институт» для экспериментов ALICE, ATLAS и LHCb на Большом адронном коллайдере (БАК)
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 621-630Просмотров за год: 2.Представлен обзор распределенной вычислительной инфраструктуры ресурсных центров коллаборации WLCG для экспериментов БАК. Особое внимание уделено описанию решаемых задач и основным сервисам нового ресурсного центра уровня Tier-1, созданного в Национальном исследовательском центре «Курчатовский институт» для обслуживания ALICE, ATLAS и LHCb экспериментов (г. Москва).
-
Использование облачных технологий CERN для дальнейшего развития по TDAQ ATLAS и его применения при обработке данных ДЗЗ в приложениях космического мониторинга
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 683-689Просмотров за год: 2.Облачные технологий CERN (проект CernVM) дают новые возможности разработчикам программного обеспечения. Участие группы TDAQ ATLAS ОИЯИ в разработке ПО распределенной системы сбора и обработке данных эксперимента ATLAS (CERN) связано с необходимостью работы в условиях динамично развивающейся системы и ее инфраструктуры. Использование облачных технологий, в частности виртуальных машин CernVM, предоставляет наиболее эффективные способы доступа как к собственно ПО TDAQ, так и к ПО, используемому в CERN: среда — Scientific Linux и software repository c CernVM-FS. Исследуется вопрос о возможности функционирования ПО промежуточного уровня (middleware) в среде CernVM. Использование CernVM будет проиллюстрировано на трех задачах: разработка пакетов Event Dump и Webemon, а также на адаптации системы автоматической проверки качества данных TDAQ ATLAS — Data Quality Monitoring Framework для задач оценки качества радиолокационных данных.
-
Особенности управления данными в DIRAC
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744Просмотров за год: 2.Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.
Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.
В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"