Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Извлечение персонажей и событий из повествований
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1593-1600Извлечение событий и персонажей из повествований является фундаментальной задачей при анализе и обработке текста на естественном языке. Методы извлечения событий применяются в самых разных областях — от обобщения различных документов до анализа медицинских записей. Мы определяли события на основе структуры под названием «четыре W» (кто, что, когда, где), чтобы охватить все основные компоненты событий, такие как действующие лица, действия, время и места. В этой статье мы рассмотрели два основных метода извлечения событий: статистический анализ синтаксических деревьев и семантическая маркировка ролей. Хотя эти методы были изучены разными исследователями по отдельности, мы напрямую сравнили эффективность двух подходов на собранном нами наборе данных, который мы разметили.
Наш анализ показал, что статистический анализ синтаксических деревьев превосходит семантическую маркировку ролей при выделении событий и символов, особенно при определении конкретных деталей. Тем не менее, семантическая маркировка ролей продемонстрировала хорошую эффективность при правильной идентификации действующих лиц. Мы оценили эффективность обоих подходов, сравнив различные показатели, такие как точность, отзывчивость и F1-баллы, продемонстрировав, таким образом, их соответствующие преимущества и ограничения.
Более того, в рамках нашей работы мы предложили различные варианты применения методов извлечения событий, которые мы планируем изучить в дальнейшем. Области, в которых мы хотим применить эти методы, включают анализ кода и установление авторства исходного кода. Мы рассматриваем возможность использования методов извлечения событий для определения ключевых элементов кода в виде назначений переменных и вызовов функций, что в дальнейшем может помочь ученым проанализировать поведение программ и определить участников проекта. Наша работа дает новое понимание эффективности статистического анализа и методов семантической маркировки ролей, предлагая исследователям новые направления для применения этих методов.
-
Эффективный алгоритм сравнения документов в формате ${\mathrm{\LaTeX}}$
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 329-345Рассматривается задача построения различий, возникающих при редактировании документов в формате ${\mathrm{\LaTeX}}$. Каждый документ представляется в виде синтаксического дерева, узлы которого называются токенами. Строится минимально возможное текстовое представление документа, не меняющее синтаксическое дерево. Весь текст разбивается на фрагменты, границы которых соответствуют токенам. С помощью алгоритма Хиршберга строится отображение последовательности текстовых фрагментов изначального документа в аналогичную последовательность отредактированного документа, соответствующее минимальному редактирующему расстоянию. Строится отображение символов текстов, соответствующее отображению последовательностей текстовых фрагментов. В синтаксических деревьях выделяются токены такие, что символы соответствующих фрагментов текста при отображении либо все не меняются, либо все удаляются, либо все добавляются. Для деревьев, образованных остальными токенами, строится отображение с помощью алгоритма Zhang–Shasha.
Ключевые слова: автоматизация, анализ текста, лексема, машинное обучение, метрика, редактирующее расстояние, синтаксическое дерево, токен, ${\mathrm{\LaTeX}}$.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Использование синтаксических деревьев для автоматизации коррекции документов в формате LaTeX
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 871-883Цитирований: 5 (РИНЦ).Рассматривается задача автоматизации коррекции документов в формате LaTeX. Каждый документ представляется в виде синтаксического дерева. С помощью модифицированного алгоритма Zhang-Shasha строится отображение вершин дерева изначального документа в вершины дерева отредактированного документа, соответствующее минимальному редактирующему расстоянию. Отображения вершины в вершину составляют обучающую выборку, по которой генерируются правила замены для автоматической коррекции. Для каждого правила собирается статистика его применимости к отредактированным документам. На ее основе производится оценка качества правил и их улучшение.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"