Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'симметрия':
Найдено статей: 31
  1. Соболев Е.В., Тихонов Д.А.
    Численное исследование сингулярности интегральных уравнений теории жидкостей в приближении RISM
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 51-62

    Предложена схема построения параметрического портрета интегральных уравнений теории жидкостей в приближении RISM. Для нахождения всех связных решений использован метод продолжения по параметру. Получены уравнения для молекулярных жидкостей, сводимых по соображениям симметрии к модели двуцентровых молекул. Для преодоления особых точек использован переход к зависимости уравнений RISM от обратной сжимаемости. С помощью предложенного метода проведены численные расчеты изотерм обратной сжимаемости метана для трех уравнений замыкания. В случае частично линеаризованного гиперцепного замыкания не обнаружено бифуркации решений. Для других замыканий получены бифуркации решений и обнаружено поведение, которое не характерно для модели простых жидкостей. В случае замыкания Перкуса-Йевика в области низких температур получены нефизические решения. Для гиперцепного замыкания в области температур выше критической точки получена дополнительная ветвь решений с изломом в точке бифуркации.

    Просмотров за год: 4.
  2. Ветчанин Е.В., Тененев В.А., Килин А.А.
    Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759

    В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.

    В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.

    Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  3. Блантер Е.М., Елаева М.С., Шнирман М.Г.
    Синхронизация и несимметрия в модели Курамото из трех неидентичных осцилляторов: особенности моделирования меридионального потока Солнца
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 345-356

    Модели Курамото нелинейно связанных осцилляторов позволяют достаточно просто описывать фазовую синхронизацию в сложных системах. В данной работе мы рассматриваем частный случай модели Курамото с тремя осцилляторами, возникший в процессе исследования и моделирования меридионального потока в конвективной зоне Солнца. В рассматриваемой модели крайние осцилляторы связаны только со средним, а прямая связь между ними отсутствует. В отличие от классических моделей Курамото рассматриваемая система предполагает существенную асимметрию в связях каждого из осцилляторов с двумя другими. Мы исследуем, какое влияние на синхронизацию оказывает коэффициент связи, характеризующий асимметрию связей среднего осциллятора. Необходимое и достаточное условия синхронизации в этой работе выписываются аналитически и получаются отличными от достаточных условий синхронизации в классической (симметричной) модели. Мы формулируем обратную задачу восстановления коэффициентов связи из фазовой разницы крайних осцилляторов при известных естественных частотах. Восстановление проводится в предположении синхронизации. Получено, что коэффициенты связи с точностью до знака восстанавливаются для любого значения коэффициента несимметрии среднего осциллятора. Мы исследуем, как меняется график зависимости суммарной связи от коэффициента несимметрии при изменении разности фаз крайних осцилляторов, а также в особых случаях совпадающих или сильно отличающихся естественных частот. В случае общего положения, при разности фаз крайних осцилляторов, близких к $\pi$, суммарная связь, соответствующая сильной асимметрии связей среднего осциллятора, оказывается меньше, чем в симметричном случае. Мы рассматриваем значения естественных частот, пересчитанные из скоростей меридионального потока Солнца. В зависимости от интерпретации данных гелиосейсмологии мы получаем два случая: случай общего положения, соответствующий наблюдениям средней ячейки, и особый случай, соответствующий наблюдениям нижней ячейки. Однозначное (с точностью до знака) восстановление коэффициентов связи в случае слабой суммарной связи возможно только в случае общего положения. В заключении делаются выводы о возможности использования курамотовских моделей с асимметрией связей, относящихся к одному осциллятору, для моделирования слабо связанных систем, к каким, по всей видимости, относится солнечная меридиональная циркуляция.

  4. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

  5. Фирсов А.А., Яранцев Д.А., Леонов С.Б., Иванов В.В.
    Численное моделирование горения этилена в сверхзвуковом потоке воздуха
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 75-86

    В представленной работе обсуждается возможность упрощенного трехмерного нестационарного моделирования процесса плазменно-стимулированного горения газообразного топлива в сверхзвуковом потоке воздуха. Расчеты проводились в программном комплексе FlowVision. В работе выполнен анализ геометрии эксперимента и сделан вывод о ее существенной трехмерности, связанной как с дискретностью подачи топлива в поток, так и с наличием локализованных плазменных образований. Предложен вариант упрощения расчетной геометрии, основанный на симметрии аэродинамического канала и периодичности пространственных неоднородностей. Выполнено тестирование модифицированной $k–\varepsilon$ модели турбулентности FlowVision (KEFV) в условиях сверхзвукового потока. В этих расчетах в области источников тепла и инжекции топлива использовалась подробная сетка без пристеночных функций, а на удаленных от ключевой области поверхностях пристеночные функции были включены. Это позволило существенно уменьшить количество ячеек расчетной сетки. Сложная задача моделирования воспламенения углеводородного топлива при воздействии плазмы была существенно упрощена путем представления плазменных образований как источников тепла и использования одной брутто-реакции для описания горения топлива. На базе геометрии аэродинамического стенда ИАДТ-50 ОИВТ РАН с помощью моделирования в программном комплексе ПК FlowVision проведены калибровка и параметрическая оптимизация подачи газообразного топлива в сверхзвуковой поток. Продемонстрировано хорошее совпадение экспериментальной и синтетической теневой картины потока при инжекции топлива. Проведено моделирование потока для геометрии камеры сгорания Т131 ЦАГИ с инжекцией топлива и генерацией плазмы. В результате моделирования для заданного набора параметров продемонстрировано воспламенение топлива, что совпало с результатами эксперимента. Отмечена важность адаптации расчетной сетки с повышением пространственного разрешения в области объемных источников тепла, моделирующих зону электрического разряда. Достигнуто удовлетворительное качественное совпадение распределений давления, полученных в моделировании и эксперименте.

    Просмотров за год: 8. Цитирований: 3 (РИНЦ).
  6. Кузьмин Р.Н., Максимов Д.С., Савенкова Н.П., Шобухов А.В.
    Центрально-симметричные стационарные состояния в одной модели электродиффузии
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 99-104

    Изучается математическая модель электродиффузии в центрально-симметричном случае. Эта модель в частности описывает перенос ионов Li+ в некоторых электрохимических источниках тока. Нами показано, что при заданных на внешней границе значениях концентрации ионов и электрического потенциала в модели существует единственное стационарное решение, которое является устойчивым аттрактором нестационарных решений при различных распределениях начальных значений.

    Просмотров за год: 1.
  7. Маничева С.В., Чернов И.А.
    Математическая модель гидридного фазового перехода в частице порошка симметричной формы
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584

    В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  8. Ашрятов А.А., Прытков С.В., Сыромясов А.О.
    Метод расчета пространственного светораспределения системы разноориентированных светодиодных излучателей
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 577-584

    В статье предложен метод расчета светораспределения системы разноориентированных светодиодных излучателей, основанный на совмещении систем координат, связанных с этими источниками света. В отличие от других известных подходов, указанный метод может быть применен к излучателям, светораспределение которых обладает произвольной симметрией или вовсе не имеет ее.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  9. Коганов А.В., Кречет В.Г.
    Введение барионных струн в модель структуры спиральных галактик
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 597-612

    Предлагается новый альтернативный подход для объяснения плоского спектра скоростей орбитального движения звезд на периферии спиральных галактик и, в частности, значительного превышения значений скоростей, вычисленных по теореме о вириале. Концепция заключается в предположении о наличии у гравитационного поля центрального тела галактики цилиндрической, а не сферической симметрии. Эту конфигурацию поля можно объяснить наличием на оси галактики космической струны, длина которой перекрывает диаметр диска галактики. Эта модель будет подвергнута сравнению с более традиционной концепцией наличия у спиральной галактики шарового гало темной материи. Для этого подхода также будет предложена кинематическая модель и высказана гипотеза о природе темного вещества. Исследуются данные астрономических наблюдений о наличии космических струн в зонах, примыкающих к галактикам.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  10. Степанян И.В.
    Биоматематическая система методов описания нуклеиновых кислот
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 417-434

    Статья посвящена применению методов математического анализа, поиска паттернов и изучения состава нуклеотидов в последовательностях ДНК на геномном уровне. Изложены новые методы математической биологии, которые позволили обнаружить и отобразить скрытую упорядоченность генетических нуклеотидных последовательностей, находящихся в клетках живых организмов. Исследования основаны на работах по алгебраической биологии доктора физико-математических наук С. В. Петухова, которым впервые были введены и обоснованы новые алгебры и гиперкомплексные числовые системы, описывающие генетические явления. В данной работе описана новая фаза развития матричных методов в генетике для исследования свойств нуклеотидных последовательностей (и их физико-химических параметров), построенная на принципах конечной геометрии. Целью исследования является демонстрация возможностей новых алгоритмов и обсуждение обнаруженных свойств генетических молекул ДНК и РНК. Исследование включает три этапа: параметризация, масштабирование и визуализация. Параметризация — определение учитываемых параметров, которые основаны на структурных и физико-химических свойствах нуклеотидов как элементарных составных частей генома. Масштабирование играет роль «фокусировки» и позволяет исследовать генетические структуры в различных масштабах. Визуализация включает выбор осей координатной системы и способа визуального отображения. Представленные в работе алгоритмы выдвигаются на роль расширенного инструментария для развития научно-исследовательского программного обеспечения анализа длинных нуклеотидных последовательностей с возможностью отображения геномов в параметрических пространствах различной размерности. Одним из значимых результатов исследования является то, что были получены новые биологически интерпретируемые критерии классификации геномов различных живых организмов для выявления межвидовых взаимосвязей. Новая концепция позволяет визуально и численно оценить вариативность физико-химических параметров нуклеотидных последовательностей. Эта концепция также позволяет обосновать связь параметров молекул ДНК и РНК с фрактальными геометрическими мозаиками, обнаруживает упорядоченность и симметрии полинуклеотидов и их помехоустойчивость. Полученные результаты стали обоснованием для введения новых научных терминов: «генометрия» как методология вычислительных стратегий и «генометрика» как конкретные параметры того или иного генома или нуклеотидной последовательности. В связи с результатами исследования затронуты вопросы биосемиотики и уровни иерархичности организации живой материи.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.