Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.
-
Современное использование сетевой инфраструктуры в системе обработки задач коллаборации ATLAS
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1343-1349Просмотров за год: 2. Цитирований: 2 (РИНЦ).Важнейшим компонентом распределенной вычислительной системы является сетевая инфраструктура. Несмотря на то что сеть составляет основу такого рода систем, она часто является незаметным партнером для систем хранения и вычислительных ресурсов. Мы предлагаем интегрировать сетевой элемент напрямую в распределенные системы через уровень управления нагрузками. Для такого подхода имеется достаточно предпосылок. Так как сложность и требования к распределенным системам растут, очень важно использовать имеющуюся инфраструктуру эффективно. Например, одни могут использовать измерения качества сетевых соединений в механизмах принятия решений в системе управления задачами. Кроме того, новейшие технологии позволяют другим задавать сетевую конфигурацию программно, например используя ПКС — программно-конфигурируемые сети. Мы опишем, как эти методы используются в системе управления задачами PanDA, применяемой коллаборацией ATLAS.
-
Хранилища баз данных в обработке в облаке
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 493-498Просмотров за год: 3.Хранение — это существенная и дорогая часть облачных вычислений как с точки зрения требований сети, так и организации доступа к данным, поэтому выбор архитектуры хранения может быть критическим для любого приложения. В этой работе мы сможем посмотреть на типы облачных архитектур для обработки и хранения данных, основанных на доказанной технологии хранения в сети масштаба пред- приятия. Преимущество облачных вычислений — это способность визуализировать и разделять ресурсы среди различных приложений для наилучшего использования сервера. Мы обсуждаем и оцениваем распределенную обработку данных, архитектуры баз данных для облачных вычислений и очередь баз данных в локальной сети и для условий реального времени.
-
Применение методики корреляционной адаптометрии в спортивных и медико-биологических исследованиях
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 345-354Просмотров за год: 10.В работе излагаются подходы к математическому моделированию механизмов, лежащих в основе широко используемых в биологии и медицине методов корреляционной адаптометрии. Построение базируется на конструкциях, лежащих в основе описания структурированных биологических систем. Предполагается, что плотность распределения численности биологической популяции удовлетворяет уравнению Колмогорова–Фоккера–Планка. С использованием данной методики оценивается эффективность лечения больных с ожирением. Все пациенты, в зависимости от степени ожирения и характера сопутствующей патологии, были разделены на три группы. Показано уменьшение веса корреляционного графа, вычисленного на измеренных у пациентов показателях для трех групп пациентов, что характеризует эффективность проведенного лечения для всех исследуемых групп. Данная методика также была использована для оценки напряженности тренировочных нагрузок у гребцов академической гребли трех возрастных групп. Было показано, что с наибольшим напряжением работали спортсмены молодежной группы. Также с использованием методики корреляционной адаптометрии оценивается эффективность лечения заместительной гормональной терапии (ЗГТ) у женщин. Все пациентки, в зависимости от назначенного препарата, были разделены на четыре группы. При стандартном анализе динамики средних величин показателей было показано, что в ходе всего лечения наблюдалась нормализация средних показателей для всех групп пациенток. Однако с использованием методики корреляционной адаптометрии было получено, что в течение первых шести месяцев вес корреляционного графа снижался, а в течение вторых шести месяцев этот вес повышался для всех исследуемых групп. Это свидетельствует о чрезмерной продолжительности годового курса ЗГТ и целесообразности перехода к полугодовому курсу.
-
Решение негладких распределенных минимаксных задач с применением техники сглаживания
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 469-480Распределенные седловые задачи имеют множество различных приложений в оптимизации, теории игр и машинном обучении. Например, обучение генеративных состязательных сетей может быть представлено как минимаксная задача, а также задача обучения линейных моделей с регуляризатором может быть переписана как задача поиска седловой точки. В данной статье исследуются распределенные негладкие седловые задачи с липшицевыми целевыми функциями (возможно, недифференцируемыми). Целевая функция представляется в виде суммы нескольких слагаемых, распределенных между группой вычислительных узлов. Каждый узел имеет доступ к локально хранимой функции. Узлы, или агенты, обмениваются информацией через некоторую коммуникационную сеть, которая может быть централизованной или децентрализованной. В централизованной сети есть универсальный агрегатор информации (сервер или центральный узел), который напрямую взаимодействует с каждым из агентов и, следовательно, может координировать процесс оптимизации. В децентрализованной сети все узлы равноправны, серверный узел отсутствует, и каждый агент может общаться только со своими непосредственными соседями.
Мы предполагаем, что каждый из узлов локально хранит свою целевую функцию и может вычислить ее значение в заданных точках, т. е. имеет доступ к оракулу нулевого порядка. Информация нулевого порядка используется, когда градиент функции является трудно вычислимым, а также когда его невозможно вычислить или когда функция не дифференцируема. Например, в задачах обучения с подкреплением необходимо сгенерировать траекторию для оценки текущей стратегии. Этот процесс генерирования траектории и оценки политики можно интерпретировать как вычисление значения функции. Мы предлагаем подход, использующий технику сглаживания, т. е. применяющий метод первого порядка к сглаженной версии исходной функции. Можно показать, что стохастический градиент сглаженной функции можно рассматривать как случайную двухточечную аппроксимацию градиента исходной функции. Подходы, основанные на сглаживании, были изучены для распределенной минимизации нулевого порядка, и наша статья обобщает метод сглаживания целевой функции на седловые задачи.
Ключевые слова: выпуклая оптимизация, распределенная оптимизация. -
Расчет магнитных свойств наноструктурных пленок методом параллельного Монте-Карло
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 693-703Изображения рельефа поверхности ультратонких магнитных пленок использовались для Монте-Карло моделирования в рамках ферромагнитной модели Изинга с целью исследования гистерезисных и термодинамических свойств наноматериалов. Для высокопроизводительных вычислений использовался параллельный сверхмасштабируемый алгоритм поиска равновесной конфигурации. Исследовано изменение распределения спинов на поверхности в процессе обращения намагниченности и динамика нанодоменной структуры тонких магнитных пленок под влиянием изменяющегося внешнего магнитного поля.
Ключевые слова: метод Монте-Карло, сверхмасштабируемый алгоритм, модель Изинга, моделирование PMOKE-изображения.Просмотров за год: 4. Цитирований: 1 (РИНЦ). -
Оценка качества кластеризации панельных данных с использованием методов Монте-Карло (на примере данных российской региональной экономики)
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1501-1513В работе рассматривается метод исследования панельных данных, основанный на использовании агломеративной иерархической кластеризации — группировки объектов на основании сходства и разли- чия их признаков в иерархию вложенных друг в друга кластеров. Применялись 2 альтернативных способа вычисления евклидовых расстояний между объектами — расстояния между усредненными по интервалу наблюдений значениями и расстояния с использованием данных за все рассматриваемые годы. Сравнивались 3 альтернативных метода вычисления расстояний между кластерами. В первом случае таким расстоянием считается расстояние между ближайшими элементами из двух кластеров, во втором — среднее по парам элементов, в третьем — расстояние между наиболее удаленными элементами. Исследована эффективность использования двух индексов качества кластеризации — индекса Данна и Силуэта для выбора оптимального числа кластеров и оценки статистической значимости полученных решений. Способ оценивания статистической достоверности кластерной структуры заключался в сравнении качества кластеризации, на реальной выборке с качеством кластеризаций на искусственно сгенерированных выборках панельных данных с теми же самыми числом объектов, признаков и длиной рядов. Генерация производилась из фиксированного вероятностного распределения. Использовались способы симуляции, имитирующие гауссов белый шум и случайное блуждание. Расчеты с индексом Силуэт показали, что случайное блуждание характеризуется не только ложной регрессией, но и ложной кластеризацией. Кластеризация принималась достоверной для данного числа выделенных кластеров, если значение индекса на реальной выборке оказывалось больше значения 95%-ного квантиля для искусственных данных. В качестве выборки реальных данных использован набор временных рядов показателей, характеризующих производство в российских регионах. Для этих данных только Силуэт показывает достоверную кластеризацию на уровне $p < 0.05$. Расчеты также показали, что значения индексов для реальных данных в целом ближе к значениям для случайных блужданий, чем для белого шума, но имеют значимые отличия и от тех, и от других. Визуально можно выделить скопления близко расположенных друг от друга в трехмерном признаковом пространстве точек, выделяемые также в качестве кластеров применяемым алгоритмом иерархической кластеризации.
-
Прогнозирование динамики трудовых ресурсов на многоотраслевом рынке труда
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 235-250Рассмотрена задача прогнозирования количества занятых и безработных многоотраслевого рынка труда на основе балансовой математической модели межотраслевых перемещений трудовых ресурсов.
Балансовая математическая модель позволяет вычислять значения показателей межотраслевых перемещений с помощью только статистических данных по отраслевой занятости и безработице, предоставляемых Федеральной службой государственной статистики. Вычисленные за несколько лет подряд показатели межотраслевых перемещений трудовых ресурсов используются для построения трендов каждого из этих показателей. С помощью найденных трендов осуществляется прогнозирование показателей межотраслевых перемещений трудовых ресурсов, на основе результатов которого проводится прогнозирование отраслевой занятости и безработицы исследуемого многоотраслевого рынка труда.
Предложенный подход применен для прогнозирования занятых специалистов в отраслях народного хозяйства Российской Федерации в 2011–2016 гг. Для описания тенденций показателей, определяющих межотраслевые перемещения трудовых ресурсов, использовались следующие виды трендов: линейный, нелинейный, константный. Порядок выбора трендов наглядно продемонстрирован на примере показателей, определяющих перемещения трудовых ресурсов из отрасли «Транспорт и связь» в отрасль «Здравоохранение и предоставление социальных услуг», а также из отрасли «Государственное управление и обеспечение военной безопасности, социальное обеспечение» в отрасль «Образование».
Произведено сравнение нескольких подходов к прогнозированию: наивный прогноз, в рамках которого прогнозирование показателей рынка труда осуществлялось только на основе константного тренда; прогнозирование на основе балансовой модели с использованием только константного тренда для всех показателей, определяющих межотраслевые перемещения трудовых ресурсов; прогноз непосредственно по количеству занятых в отраслях экономики с помощью рассматриваемых в работе видов трендов; прогнозирование на основе балансовой модели с выбором тренда для каждого показателя, определяющего межотраслевые перемещения трудовых ресурсов. Показано, что использование балансовой модели обеспечивает лучшее качество прогноза по сравнению с прогнозированиемне посредственно по количеству занятых. Учет трендов показателей межотраслевых перемещений улучшает качество прогноза.
Также в статье приведены примеры анализа состояния многоотраслевого рынка труда Российской Федерации. С помощью балансовой модели были получены такие сведения, как распределение исходящих из конкретных отраслей потоков трудовых ресурсов по отраслямэк ономики, отраслевая структура входящих в конкретные отрасли потоков трудовых ресурсов. Эти сведения не содержаться непосредственно в данных, предоставляемых Федеральной службой государственной статистики.
-
Эффективная обработка и классификация энергетических спектров морского волнения на основе распределенного вычислительного конвейера
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 517-520Просмотров за год: 3. Цитирований: 2 (РИНЦ).Обработка больших массивов данных обычно происходит в несколько последовательно выполняемых этапов, таких как пред- и постобработка, после каждого из которых промежуточные данные записываются на диск; однако, для каждой задачи этап предварительной обработки может отличаться, и в таком случае непосредственная передача данных по вычислительному конвейеру от одного этапа (звена) к другому бу- дет более эффективным с точки зрения производительности решением. В более общем случае некоторые этапы можно разделить на параллельные части, сформировав таким образом распределенный вычислительный конвейер, каждое звено которого может иметь несколько входов и выходов. Такой принцип обработки данных применяется в задаче о классификации энергетических спектров морского волнения, которая основана на аппроксимациях, позволяющих извлекать параметры отдельных систем волн (тип волн, генеральное направление волн и т. п.). Система, построенная на этом принципе показывает более высокую производительность по сравнению с часто применяемой поэтапной обработкой данных.
-
Визуализация работы распределенного приложения на базе библиотеки mqcloud
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 529-532Цитирований: 1 (РИНЦ).Независимые компоненты, взаимодействующие между собой при помощи комплексного управления, делают работу сложных распределенных вычислительных систем плохо масштабируемой в рамках имеющегося промежуточного коммуникационного программного обеспечения. Можно выделить две основные проблемы масштабирования таких систем: перегрузка неравноценных узлов из-за равномерного перераспределения нагрузки и сложности в реализации продолжительного взаимодействия нескольких узлов системы. В данной работе мы рассмотрели созданное решение позволяющее обеспечивать визуальное отображение работы такой динамической системы.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"