Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'принципал':
Найдено статей: 75
  1. Титлянова А.А.
    Школы по математической биологии 1973–1992 гг.
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 411-422

    В кратком обзоре описаны тематика и выборочные доклады Школ по моделированию сложных биологических систем. Школы явились естественным развитием этого направления науки в нашей стране, местом коллективного мозгового штурма, вдохновляемого такими выдающимися фигурами современности, как А. А. Ляпунов, Н. В. Тимофеев-Ресовский, А. М. Молчанов. На школах в острой дискуссионной форме поднимались общие вопросы методологии математического моделирования в биологии и экологии, обсуждались фундаментальные принципы структурной организации и функции сложных биологических и экологических систем. Школы служили важным примером междисциплинарного взаимодействия ученых разных не только и не столько специальностей, сколько разных мироощущений, подходов и способов отодвигать границу непознанного. Что тем не менее объединяло математиков и биологов, участников школ, так это общее понимание плодотворности данного союза. Доклады, дискуссии, размышления, сохранившиеся в материалах Школ, не потеряли актуальность до сих пор и могут служить определенными ориентирами для современного поколения ученых.

    Просмотров за год: 2.
  2. Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.

    В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.

  3. Хавинсон М.Ю., Лосев А.С., Кулаков М.П.
    Моделирование численности занятого, безработного и экономически неактивного населения Дальнего Востока России
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 251-264

    Исследования кризисной социально-демографической ситуации на Дальнем Востоке требуют не только применения традиционных статистических методов, но и концептуального анализа возможных сценариев развития, основанного на принципах синергетики. Статья посвящена моделированию численности занятого, безработного и экономически неактивного населения Дальнего Востока на основе нелинейных дифференциальных уравнений с постоянными коэффициентами. Рассмотрена базовая нелинейная математическая модель, основанная на принципе парных взаимодействий и являющаяся частным случаем модели борьбы условных информаций по Д.С. Чернавскому. Методом наименьших квадратов, адаптированным для данной модели, найдены точечные оценки параметров, характеризующих динамику численностей занятых, безработных и экономически неактивного населения Дальнего Востока России за 2000–2017 гг. Средняя ошибка аппроксимации составила не более 5.17 %. Полученная точечная оценка параметров в асимптотическом случае соответствует неустойчивому фокусу (расходящимся колебаниям оцениваемых показателей численности), что свидетельствует, в аспекте проведенного моделирования, о постепенном увеличении диспропорций между рассматриваемыми группами населения и обвале их динамики в инерционном сценарии. Обнаружено, что в окрестности инерционного сценария формируется нерегулярная хаотическая динамика, что усложняет возможность эффективного управления. Установлено, что изменение лишь одного параметра в модели (в частности, миграционного) при отсутствии структурных социально-экономических сдвигов может лишь отсрочить обвал динамики в долгосрочной перспективе либо привести к появлению сложно предсказуемых режимов (хаоса). Найдены другие оценки параметров модели, соответствующие устойчивой динамике (устойчивому фокусу), которая неплохо согласуется с реальной динамикой численности рассматриваемых групп населения. Согласно исследованной математической модели бифуркационными являются параметры, характеризующие темпы оттока трудоспособного населения, рождаемость (омоложение населения), а также темп миграционного притока безработных. Показано, что переход к устойчивому сценарию возможен при одновременном воздействии на несколько этих параметров, что требует сложного комплекса мероприятий по закреплению населения Дальнего Востока России и роста уровня их доходов, в пересчете на компенсацию инфраструктурной разреженности. Для разработки конкретных мер в рамках государственной политики необходимы дальнейшие экономические и социологические исследования.

  4. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

  5. Каменев Г.К., Каменев И.Г.
    Многокритериальный метрический анализ данных при моделировании человеческого капитала
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1223-1245

    В статье описываетсявы числимаям одель человека в информационной экономике и демонстрируется многокритериальный оптимизационный подход к метрическому анализу модельных данных. Традиционный подход к идентификации и исследованию модели предполагает идентификацию модели по временным рядам и прогнозирование дальнейшей динамики ряда. Однако этот подход неприменим к моделям, некоторые важнейшие переменные которых не наблюдаютсяя вно, и известны только некоторые типичные границы или особенности генеральной совокупности. Такая ситуация часто встречается в социальных науках, что делает модели сугубо теоретическими. Чтобы избежать этого, для (неявной) идентификации и изучения таких моделей предлагается использовать метод метрического анализа данных (MMDA), основанный на построении и анализе метрических сетей Колмогорова – Шеннона, аппроксимирующих генеральную совокупность данных модельной генерации в многомерном пространстве социальных характеристик. С помощью этого метода идентифицированы коэффициенты модели и изучены особенности ее фазовых траекторий. Представленнаяв статье модель рассматривает человека как субъекта, обрабатывающего информацию, включая его информированность и когнитивные способности. Составлены пожизненные индексы человеческого капитала: креативного индивида (обобщающего когнитивные способности) и продуктивного (обобщает объем освоенной человеком информации). Поставлена задача их многокритериальной (двухкритериальной) оптимизации с учетом ожидаемой продолжительности жизни. Такой подход позволяет выявить и экономически обосновать требования к системе образования и социализации (информационному окружению) человека до достиженияим взрослого возраста. Показано, что в поставленной оптимизационной задаче возникает Парето-граница, причем ее тип зависит от уровня смертности: при высокой продолжительности жизни доминирует одно решение, в то время как для более низкой продолжительности жизни существуют различные типы Парето-границы. В частности, в случае России применим принцип Парето: значительное увеличение креативного человеческого капитала индивида возможно за счет небольшого сниженияпр одуктивного человеческого капитала (обобщение объема освоенной человеком информации). Показано, что рост продолжительности жизни делает оптимальным компетентностный подход, ориентированный на развитие когнитивных способностей, в то время как при низкой продолжительности жизни предпочтительнее знаниевый подход.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.