Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
От однородного к неоднородному электронному аналогу ДНК
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.
-
Исследование усредненной модели окислительной регенерации закоксованного катализатора
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.
Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.
В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.
В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.
В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.
-
Моделирование динамики общественного внимания к протяженным процессам на примере пандемии COVID-19
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1131-1141Изучается динамика общественного внимания к эпидемии COVID-19 в ряде стран. При этом в качестве индикатора общественного внимания взято количество поисковых запросов в Google, сделанных в течение суток пользователями изданной страны. В эмпирической части работы рассмотрены данные относительно количества запросов и количества новых заболевших для ряда стран. Показано, что во всех рассмотренных странах максимум общественного внимания наступил ранее максимума количества новых зараженных за день. Тем самым обнаружено, что в течение некоторого периода времени рост эпидемии происходит параллельно со спадом общественного внимания к ней. Также показано, что спад количества запросов описывается экспоненциальной функцией времени. Для того чтобы описать выявленную эмпирическую зависимость, предложена математическая модель, представляющая собой модификацию модели спада внимания после одноразового политического события. Модель развивает подход, рассматривающий принятие решения индивидом как членом социума, в котором происходит информационный процесс. В рамках этого подхода предполагается, что решение индивида о том, делать ли в данный день поисковый запрос на тему COVID, формируется на основании двух факторов. Один изн их — это установка, отражающая долгосрочную заинтересованность индивида в данной теме и аккумулирующая предыдущий опыт индивида, его культурные предпочтения, социальное и экономическое положение. Второй — динамический фактор общественного внимания к данному процессу — изменяется в течение рассматриваемого процесса под влиянием информационных стимулов. Применительно к рассматриваемой тематике информационные стимулы связны с эпидемической динамикой. Пове- денческая гипотеза состоит в том, что если в некоторый день сумма установки и динамического фактора превышает некоторую пороговую величину, то в этот день индивид делает поисковый запрос на тему COVID. Общая логика состоит в том, что чем выше скорость роста числа заболевших, тем выше информационный стимул, тем медленнее убывает общественное внимание к пандемии. Таким образом, построенная модель позволила соотнести скорость экспоненциального убывания количества запросов со скоростью роста количества заболевших. Обнаруженная с помощью модели закономерность проверена на эмпирических данных. Получено, что статистика Стьюдента равна 4,56, что позволяет отклонить гипотезу об отсутствии корреляционной связи с уровнем значимости 0,01.
Ключевые слова: общественное внимание, COVID-19, инфодемия, математическая модель, количество поисковых запросов. -
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение. -
Агентная модель социальной динамики с использованием подходов роевого интеллекта
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1513-1527В работе рассматривается применение технологии роевого интеллекта для построения агентных имитационных моделей. В качестве примера построена минимальная модель, иллюстрирующая влияние информационных воздействий на правила поведения агентов в простейшей модели конкуренции между двумя популяциями, агенты которых выполняют простейшую задачу переноса ресурса из подвижного источника на свою территорию. Алгоритм движения агентов в пространстве модели реализован на основе классического алгоритма роя частиц. Агенты имеют жизненный цикл, то есть учитываются процессы рождения и гибели. В модели учитываются информационные процессы, которые определяют целевые функции поведения вновь появившихся агентов. Эти процессы (обучение и переманивание) определяются информационными воздействиями со стороны популяций. При определенных условиях в системе агентов возникает третья популяция. Агенты такой популяции информационно воздействуют на агентов остальных популяций в некотором радиусе вокруг себя, изменяя их правила поведения в соответствии со своими, что в определенных условиях вытесняет остальные популяции.
В результате проведенных имитационных экспериментов было показано, что в системе реализуются следующие финальные состояния: вытеснение новой популяцией остальными, сосуществование новой популяции и остальных популяций и отсутствие такой популяции. Было показано, что с увеличением радиуса влияния агентов популяция с измененными правилами поведения вытесняет все остальные. Также показано, что в случае труднодоступного ресурса стратегия переманивания агентов конкурирующей популяции более выгодна.
-
Синтез АТФ F1-АТФазой в стохастической модели
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 217-223Просмотров за год: 2. Цитирований: 1 (РИНЦ).Данная работа является продолжением цикла работ [1-4], посвященных построению математической модели вращающегося молекулярного мотора F1-АТФазы. В данной работе в рамках представленной ранее модели рассматривается синтез АТФ при вращении ротора молекулярного мотора под действием внешней силы.
-
Численное моделирование экологического состояния Азовского моря с применением схем повышенного порядка точности на многопроцессорной вычислительной системе
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 151-168Просмотров за год: 4. Цитирований: 31 (РИНЦ).В статье приводятся результаты трехмерного моделирования экологического состояния мелководного водоема на примере Азовского моря с использованием схем повышенного порядка точности на многопроцессорной вычислительной системе Южного федерального университета. Для решения поставленной задачи были построены и изучены дискретные аналоги операторов конвективного и диффузионного переносов четвертого порядка точности в случае частичной заполненности ячеек расчетной области. Разработанные схемы повышенного (четвертого) порядка точности были использованы при решении задач водной экологии для моделирования пространственного распределения загрязняющих биогенных веществ, вызывающих бурный рост фитопланктона, многие виды которого являются токсичными и вредоносными. Использование схем повышенного порядка точности позволило повысить качество входных данных, а также уменьшить значение погрешности при решении модельных задач водной экологии. Были проведены численные эксперименты для задачи транспорта веществ на основе схем второго и четвертого порядков точностей, которые показали, что для задачи диффузии-конвекции удалось повысить точность в 48,7 раз. Предложен и численно реализован математический алгоритм, предназначенный для восстановления рельефа дна мелководного водоема на основе гидрографической информации (глубины водоема в отдельных точках или изолиний уровня), с помощью которого была получена карта рельефа дна Азовского моря, используемая для построения полей течений, рассчитанных на основе гидродинамической модели. Поля течений водного потока используются в работе в качестве входной информации для моделей водной экологии. Была разработана библиотека двухслойных итерационных методов, предназначенная для решения девятидиагональных сеточных уравнений, возникающих при дискретизации модельных задач изменения концентраций загрязняющих веществ, планктона и рыб на многопроцессорной вычислительной системе, что позволило повысить точность расчетных данных и дало возможность получать оперативные прогнозы изменения экологического состояния мелководного водоема в кратчайшие временные промежутки.
-
Модельный подход к определению валовой и нетто первичной продукции лесных экосистем по величине поглощенной фотосинтетически активной радиации
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 345-353Просмотров за год: 1. Цитирований: 2 (РИНЦ).В работе предложена простая нелинейная модель, позволяющая рассчитать суточные и месячные значения валовой (GPP) и нетто (NPP) первичной продукции лесов по параметрам, характеризующим эффективность использования растениями ФАР на GPP и NPP, а также по интегральной величине поглощенной растительностью фотосинтетически активной радиации ФАР, определяемой в ходе измерений, в том числе средствами дистанционного зондирования. Необходимые для построения модели значения GPP и NPP определялись по данным измерений потоков СО2 в еловых и влажных тропических лесах с применением процесс-ориентированной модели Mixfor-SVAT.
-
Численный метод нахождения равновесий Нэша и Штакельберга в моделях контроля качества речных вод
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 653-667В статье рассмотрена задача построения равновесий Нэша и Штакельберга при исследовании динамической системы контроля качества речных вод. Учитывается влияние субъектов управления двух уровней: одного ведущего и нескольких ведомых. В качестве ведущего (супервайзера) выступает природоохранный орган, а в роли ведомых (агентов) — промышленные предприятия. Основной целью супервайзера является поддержание допустимой концентрации загрязняющих веществ в речной воде. Добиться этого он может не единственным образом, поэтому, кроме того, супервайзер стремится к оптимизации своего целевого функционала. Супервайзер воздействует на агентов, назначая величину платы за сброс загрязнений в водоток. Плата за загрязнение от агента поступает в федеральный и местные бюджеты, затем распределяется на общих основаниях. Таким образом, плата увеличивает бюджет супервайзера, что и отражено в его целевом функционале. Причем плата за сброс загрязнений начисляется за количество и/или качество сброшенных загрязнений. К сожалению, для большинства систем контроля качества речных вод такая практика неэффективна из-за малого размера платы за сброс загрязнений. В статье и решается задача определения оптимального размера платы за сброс загрязнений, который позволяет поддерживать качество речной воды в заданном диапазоне.
Агенты преследуют только свои эгоистические цели, выражаемые их целевыми функционалами, и не обращают внимания на состояние речной системы. Управление агента можно рассматривать как часть стока, которую агент очищает, а управление супервайзера — как назначаемый размер платы за сброс оставшихся загрязнений в водоток.
Для описания изменения концентраций загрязняющих веществ в речной системе используется обыкновенное дифференциальное уравнение. Проблема поддержания заданного качества речной воды в рамках предложенной модели исследуется как с точки зрения агентов, так и с точки зрения супервайзера. В первом случае возникает дифференциальная игра в нормальной форме, в которой строится равновесие Нэша, во втором — иерархическая дифференциальная игра, разыгрываемая в соответствии с информационным регламентом игры Штакельберга. Указаны алгоритмы численного построения равновесий Нэша и Штакельберга для широкого класса входных функций. При построении равновесия Нэша возникает необходимость решения задач оптимального управления. Решение этих задач проводится в соответствии с принципом максимума Понтрягина. Строится функция Гамильтона, полученная система дифференциальных уравнений решается численно методом стрельбы и методом конечных разностей. Проведенные численные расчеты показывают, что низкий размер платы за единицу сброшенных в водоток загрязнений приводит к росту концентрации загрязняющих веществ в водотоке, а высокий — к банкротству предприятий. Это приводит к задаче нахождения оптимальной величины платы за сброс загрязнений, то есть к рассмотрению проблемы с точки зрения супервайзера. В этом случае возникает иерархическая дифференциальная игра супервайзера и агентов, в которой ищется равновесие Штакельберга. Возникает задача максимизации целевого функционала супервайзера с учетом управлений агентов, образующих равновесие Нэша. При нахождении оптимальных управлений супервайзера используется метод качественно репрезентативных сценариев, а для агентов — принцип максимума Понтрягина. Проведены численные эксперименты, найден коэффициент системной согласованности. Полученные численные результаты позволяют сделать вывод, что система контроля качества речных вод плохо системно согласована и для достижения стабильного развития системы необходимо иерархическое управление.
Ключевые слова: равновесие Нэша, равновесие Штакельберга, принцип максимума Понтрягина, экономическое управление. -
Анализ идентифицируемости математической модели пиролиза пропана
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.
Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.
Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.
Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"