Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'популяционные модели':
Найдено статей: 35
  1. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

  2. Ревуцкая О.Л., Неверова Г.П., Фрисман Е.Я.
    Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961

    В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.

  3. Абрамова Е.П., Рязанова Т.В.
    Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531

    В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.

    Просмотров за год: 28.
  4. Жданова О.Л., Колбина Е.А., Фрисман Е.Я.
    Эволюционные эффекты неселективного равновесного промысла в генетически неоднородной популяции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 717-735

    Оптимизация промысла остается важной задачей математической биологии. Концепция максимального равновесного изъятия MSY, популярная в теории оптимальной эксплуатации, предполагает поддержание численности популяции на уровне максимального воспроизводства, что в теории позволяет балансировать между экономической выгодой и сохранением биоресурсов. Однако этот подход имеет ограничения, обусловленные сложной структурой популяций и нелинейностью динамических процессов. Особую проблему представляют эволюционные последствия: селективный промысел изменяет условия отбора, что ведет к трансформации поведенческих характеристик, ухудшению качества потомства и изменению генофонда. Влияние неселективного промысла на генетический состав изучено меньше.

    В работе исследуется влияние неселективного промысла с постоянной долей изъятия на эволюцию генетически неоднородной популяции. Предполагается, что генетическое разнообразие контролируется одним локусом с двумя аллелями. При высокой и низкой численности преимущество получают разные генотипы: одни более плодовиты (r-стратегия), другие более устойчивы к ограничению по ресурсам (K-стратегия). Рассматривается классическая эколого-генетическая модель с дискретным временем в предположении, что приспособленность каждого из генотипов линейно зависит от популяционной численности. Включение в модель коэффициента промыслового изъятия позволяет связать задачу оптимизации промысла с задачей прогноза отбора генотипов.

    Аналитически показано, что при промысле, обеспечивающем максимальный устойчивый улов (MSY), равновесный генетический состав не меняется, а численность снижается вдвое, при этом тип генетического равновесия может измениться. Это связано с тем, что оптимальная доля изъятия для одного генетического равновесия не является оптимальной для других. В отсутствие промысла доминируют K-стратеги, но изъятие особей может сместить баланс в пользу r-стратегов, чья высокая плодовитость компенсирует потери. Определены критические уровни изъятия, при которых происходит смена доминирующей стратегии.

    Результаты объясняют, почему промысловые популяции медленно восстанавливаются после прекращения эксплуатации: промысел закрепляет адаптации, выгодные при изъятии, но снижающие устойчивость в естественных условиях. Например, у песцов в неволе закрепляются высокопродуктивные генотипы, тогда как в природе преобладают особи с меньшей плодовитостью, но большей выживаемостью. Это указывает на необходимость учета генетической динамики при разработке стратегий устойчивого промысла.

  5. Неверова Г.П., Фрисман Е.Я.
    Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1165-1190

    В данной работе рассматривается простейшая модель динамики популяции с неперекрывающимися поколениями, в которой плотностно-зависимые факторы лимитируют интенсивность рождаемости. При этом репродуктивный потенциал определяется генетически, а процессы размножения приурочены к определенному годовому сезону. Исследуемая в работе эколого-генетическая модель представляет собой объединение экологической модели динамики лимитированной популяции с неперекрывающимися поколениями и микроэволюционной модели динамики ее генетической структуры для случая, когда адаптивное разнообразие репродуктивных возможностей в популяции определяется одним аутосомным диаллельным локусом с аллеломорфами $А$ и $а$. В ходе исследования данной модели показано, что генетический состав популяции (а именно, будет ли она полиморфной или мономорфной) определяется значениями репродуктивных потенциалов гетерозиготы и гомозигот. При этом режимы динамики численности популяции определяются величиной среднего репродуктивного потенциала зрелых особей и интенсивностью процессов саморегуляции. В частности, показано, что эволюционный рост среднего значения репродуктивного потенциала при плотностной регуляции рождаемости приводит к дестабилизации динамики численности возрастных групп. В то время как интенсивность процессов саморегуляции определяет характер возникающих колебаний, поскольку от количественной оценки именно этого фактора зависит сценарий потери устойчивости равновесных состояний. Показано, что закономерности возникновения и эволюции циклических режимов динамики в большой степени определяются особенностями жизненного цикла особей, составляющих популяцию. Именно жизненный цикл определяет наличие изолированных субпопуляций разных лет, что, в свою очередь, приводит к возможности независимой микроэволюции этих субпопуляций и возникновения сложных сценариев динамики как численности, так и генетической структуры. Закрепление разных адаптивных мутаций постепенно приведет к генетической (а возможно, и морфологической) дифференциации и к различиям в средних репродуктивных потенциалах субпопуляций и достижению ими разного равновесного уровня численности. Дальнейший эволюционный рост репродуктивных потенциалов экологически лимитированных субпопуляций приводит к колебаниям их численности, которые могут отличаться не только амплитудой, но и фазой. Обнаруженные в предложенной модели сценарии микроэволюции генетического состава популяции, связанные с колебаниями численности, вполне согласуются с результатами исследований популяции тихоокеанской горбуши, которая демонстрирует не только колебания численности, но и наличие генетически дифференцированных субпопуляций смежных поколений.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.