Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическое моделирование динамики численности возрастных групп занятых на примере южных регионов Дальнего Востока России
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 787-801Просмотров за год: 4. Цитирований: 3 (РИНЦ).Предлагается нелинейная математическая модель динамики численности занятого населения разных возрастных групп с учетом их взаимодействий, которые рассматриваются по аналогии с популяционными взаимодействиями (конкуренция, дискриминация, помощь, угнетение и т. п.). Под взаимодействиями понимаются такие обобщенные социально-экономические механизмы, которые вызывают взаимосвязанные изменения численности занятых различных возрастных групп. Рассматриваются три возрастные группы занятого населения: молодые специалисты (15–29 лет), с опытом работы (30–49 лет), работники предпенсионного и пенсионного возраста (50 и старше). На основе статистических данных выполнена оценка параметров предложенной модели для южных регионов Дальневосточного федерального округа (ДФО). Анализ модели и модельных сценариев позволяет заключить, что наблюдаемые колебания численности разновозрастных работников на фоне стабильной общей численности занятого населения могут быть следствием сложных взаимодействий этих групп между собой. Вычислительные эксперименты, проведенные при полученных значениях параметров, позволили рассчитать темпы снижения численности и старения занятого населения, а также определить характер взаимодействий между возрастными группами занятых, прямо не отраженный в статистических данных. Установлено, что в целом по ДФО занятые 50 лет и старше находятся с работающей молодежью до 29 лет в отношениях дискриминации, занятые до 29 лет и 30–49 лет — в отношениях партнерства. Наиболее развитые регионы (Приморский край и Хабаровский край) демонстрируют «равномерную» конкуренцию среди разных возрастных групп занятого населения. Для Приморского края удалось выявить эффект перемешивания сценариев динамики, что характерно для систем, находящихся в состоянии структурной перестройки. Этот эффект выражается в том, что при значительном уменьшении миграционного притока занятых 30–49 лет будут формироваться длинные циклы занятости. Кроме того, изменение миграции сопровождается сменой типа взаимодействия — с дискриминации старшего поколения средним на дискриминацию среднего возраста старшим. Для менее развитых регионов Дальнего Востока (Амурская, Магаданская и Еврейская автономная области) характерны более низкие значения миграционного сальдо почти всех возрастов, а также дискриминация со стороны занятой молодежи до 29 лет других возрастных групп и дискриминация занятыми 30–49 лет старшего поколения.
-
Определение характеристик случайного процесса путем сравнения со значениями на основе моделей законов распределения
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1105-1118Эффективность систем связи и передачи данных (ССиПД), являющихся неотъемлемой составляющей современных систем практически в любой области науки и техники, во многом зависит от стабильности частоты формируемых сигналов. Формируемые в ССиПД сигналы могут рассматриваться как процессы, частота которых изменяется под действием совокупности внешних воздействий. Изменение частоты сигналов приводит к уменьшению отношения «сигнал/шум» (ОСШ) и, соответственно, ухудшению характеристик ССиПД, таких как вероятность битовой ошибки, пропускная способность. Описание таких изменений частоты сигналов наиболее удобно рассматривать как случайные процессы, аппарат которых находит широкое применение при построении математических моделей, описывающих функционирование систем и устройств в различных областях науки и техники. При этом во многих случаях характеристики случайного процесса, такие как закон распределения, математическое ожидание и дисперсия, могут являться неизвестными или известными с погрешностями, не позволяющими получить приемлемые по точности оценки параметров сигналов. В статье предлагается алгоритм решения задачи по определению характеристик случайного процесса (частоты сигнала) на основе набора отсчетов его частоты, позволяющих определить выборочное среднее, выборочную дисперсию и закон распределения отклонений частоты в генеральной совокупности. Основой данного алгоритма является сравнение измеренных на некотором временном интервале значений наблюдаемого случайного процесса с набором того же количества случайных значений, сформированных на основе модельных законов распределения. В качестве модельных законов распределения могут рассматриваться законы распределения, принятые на основе математических моделей этих систем и устройств или соответствующие аналогичным системам и устройствам. В качестве математического ожидания и дисперсии при формировании набора случайных значений для принятого модельного закона распределения принимаются выборочные среднее значение и дисперсия, полученные по результатам измерений наблюдаемого случайного процесса. Особенность алгоритма заключается в проведении сравнения упорядоченных по возрастанию или убыванию измеренных значений наблюдаемого случайного процесса и сформированных наборов значений в соответствии с принятыми моделями законов распределения. Приведены результаты математического моделирования, иллюстрирующие применение данного алгоритма.
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





