Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'оценка состояния объекта':
Найдено статей: 24
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  3. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 581-584
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  6. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 385-387
  7. Киселев М.В., Урусов А.М., Иваницкий А.Ю.
    Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400

    Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.

  8. Чуканов С.Н.
    Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719

    В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.

  9. Чуканов С.Н.
    Сравнение сложных динамических систем на основе топологического анализа данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 513-525

    В работе рассматривается возможность сравнения и классификации динамических систем на основе топологического анализа данных. Определение мер взаимодействия между каналами динамических систем на основе методов HIIA (Hankel Interaction Index Array) и PM (Participation Matrix) позволяет построить графы HIIA и PM и их матрицы смежности. Для любой линейной динамической системы может быть построен аппроксимирующий ориентированный граф, вершины которого соответствуют компонентам вектора состояния динамической системы, а дуги — мерам взаимного влияния компонент вектора состояния. Построение меры расстояния (близости) между графами различных динамических систем имеет важное значение, например для идентификации штатного функционирования или отказов динамической системы или системы управления. Для сравнения и классификации динамических систем в работе предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам, с весами ребер, соответствующими мерам взаимодействия между каналами динамической системы. На основе методов HIIA и PM определяются матрицы мер взаимодействия между каналами динамических систем. В работе приведены примеры формирования взвешенных ориентированных графов для различных динамических систем и оценивания расстояния между этими системами на основе топологического анализа данных. Приведен пример формирования взвешенного ориентированного графа для динамической системы, соответствующей системе управления компонентами вектора угловой скорости летательного аппарата, который рассматривается как твердое тело с главными моментами инерции. Метод топологического анализа данных, используемый в настоящей работе для оценки расстояния между структурами динамических систем, основан на формировании персистентных баркодов и функций персистентного ландшафта. Методы сравнения динамических систем на основе топологического анализа данных могут быть использованы при классификации динамических систем и систем управления. Применение традиционной алгебраической топологии для анализа объектов не позволяет получить достаточное количество информации из-за уменьшения размерности данных (в связи потерей геометрической информации). Методы топологического анализа данных обеспечивают баланс между уменьшением размерности данных и характеристикой внутренней структуры объекта. В настоящей работе используются методы топологического анализа данных, основанные на применении фильтраций Vietoris-Rips и Dowker для присвоения каждому топологическому признаку геометрической размерности. Для отображения персистентных диаграмм метода топологического анализа данных в гильбертово пространство и последующей количественной оценки сравнения динамических систем используются функции персистентного ландшафта. На основе построения функций персистентного ландшафта предлагаются сравнение графов динамических систем и нахождение расстояний между динамическими системами. Для этой цели предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам. Приведены примеры нахождения расстояния между объектами (динамическими системами).

  10. Работа посвящена проблеме создания модели со стационарными параметрами по ретроспективным данным в условиях неизвестных возмущений. Рассматривается случай, когда представительная выборка состояний объекта может быть сформирована с использованием ретроспективных данных, накопленных только в течение значительного интервала времени. При этом допускается, что неизвестные возмущения могут действовать в широком частотном диапазоне и могут иметь низкочастотные и трендовые составляющие. В такой ситуации включение в выборку данных разных временных периодов может привести к противоречиям и чрезвычайно снизить точность модели. В работе дан обзор подходов и способов согласования данных. При этом основное внимание уделено отбору данных. Дана оценка применимости различных вариантов отбора данных как инструмента снижения уровня неопределенности. Предложен метод идентификации модели объекта с самовыравниванием по данным, накопленным за значительный период времени в условиях неизвестных возмущений с широким частотным диапазоном. Метод ориентирован на создание модели со стационарными параметрами, не требующей периодической перенастройки под новые условия. Метод основан на совместном применении отбора данных и представлении данных отдельных периодов времени в виде приращений относительно начального для периода момента времени. Это позволяет уменьшить число параметров, которые характеризуют неизвестные возмущения при минимуме допущений, ограничивающих применение метода. В результате снижается размерность поисковой задачи и минимизируются вычислительные затраты, связанные с настройкой модели. Рассмотрены особенности применения метода при нелинейной модели. Метод использован при разработке модели закрытого охлаждения стали на агрегате непрерывного горячего оцинковании стальной полосы. Модель может использоваться при упреждающем управлении тепловыми процессами и при выборе скорости движения полосы. Показано, что метод делает возможным разработку модели тепловых процессов с секции закрытого охлаждения в условиях неизвестных возмущений, имеющих в том числе низкочастотные составляющие.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.