Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'обратные задачи':
Найдено статей: 65
  1. Чертов О.Г., Надпорожская М.А.
    Модели динамики органического вещества почв: проблемы и перспективы
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 391-399

    Почва как сложная полифункциональная открытая система является одним из наиболее проблемных объектов для моделирования. Несмотря на значительные успехи в моделировании почвенной системы, существующие модели не отражают все факторы и процессы минерализации и гумификации органического вещества в почве. С учетом опыта создания и широкого применения системы моделей ROMUL и EFIMOD определены проблемы и точки роста в области моделирования динамики органического вещества почв и элементов-биофилов. В работе рассмотрены вопросы дальнейшего теоретического обоснования, улучшения структуры моделей, подготовки и неопределенности исходных данных, включения всей почвенной биоты (микроорганизмов, микро- и мезофауны) как факторов гумусообразования, влияния минералогического состава почв на динамику углерода и азота, гидротермического режима и формирования органического вещества по профилю почвы, вертикальной и горизонтальной миграции органического вещества. Для успешного решения этих задач необходима эффективная обратная связь между разработчиками моделей и экспериментаторами.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  2. Голубев В.И., Шевченко А.В., Петров И.Б.
    Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910

    Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.

    В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.

  3. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

  4. Андреева А.А., Ананд М., Лобанов А.И., Николаев А.В., Пантелеев М.А.
    Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951

    Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.

    В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.

    Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.

  5. Холодков К.И., Алёшин И.М.
    Точное вычисление апостериорной функции распределения вероятно- сти при помощи вычислительных систем
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 539-542

    Представленная работа описывает опыт создания и развёртывания веб-приложения и гридинфраструктуры для решения задач геофизики, требующих большого количества вычислительных ресурсов. В работе представлен обзор технологии и механизма платформы интеграции геофизических приложений с распределёнными вычислительными системами. Разработанная платформа предоставляет собой промежуточное программное обеспечение, предоставляющая удобный доступ к развёрнутым на ее основе геофизическим приложениям. Доступ к приложению осуществляется через веб-браузер. Интеграция новых приложений облегчается за счёт предоставляемого стандартного универсального интерфейса взаимодействия платформы и новым приложением.

    Для организации распределённой вычислительной системы применено ПО Gridway, экземпляр которого взаимодействует с виртуализированными вычислительными кластерами. Виртуализация вычислительных кластеров предоставляет новые возможности при утилизации вычислительных ресурсов по сравнению с традиционными схемами организации кластерного ПО.

    В качестве пилотной задачи использована обратная задача определение параметров анизотропии коры и верхней мантии по данным телесейсмических наблюдений. Для решения использован вероятностный подход к решению обратных задач, основанный на формализме апостериорной функции распределения (АПФР). При этом вычислительная задача сводится к табулированию многомерной функции. Результат вычислений представлен в удобном для анализа высокоуровневом виде, доступ и управление осуществляется при помощи СУБД. Приложение предоставляет инструменты анализу АПФР: расчет первых моментов, двумерные маргинальные распределения, двумерные сечения АПФР в точках ее максимума. При тестировании веб-приложения были выполнены вычислены как синтетических, так и для реальных данных.

    Просмотров за год: 3.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.