Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Калибровка эластостатической модели манипулятора с использованием планирования эксперимента на основе методов искусственного интеллекта
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1535-1553В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.
Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.
-
Распределенные вычисления для эксперимента BES-III
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 469-473В 2009 году в Пекине заработал детектор BES-III (Beijing Spectrometer) [1] ускорителя BEPC-II (Beijing Electron–Positron Collider). Запущенный еще в 1989 году BEPC за время своей работы предоставил данные для целого ряда открытий в области физики очарованных частиц. В свою очередь на BES-III удалось получить крупнейшие наборы данных для J/ ψ, ψ' и ψ частиц при энергии ускорителя 2.5– 4.6 ГэВ. Объемы данных с эксперимента (более 1 ПБ) достаточно велики, чтобы задуматься об их распределенной обработке. В данной статье представлена общая информация, результаты и планы развития проекта распределенной обработки данных эксперимента BES-III.
Ключевые слова: BES-III, распределённый компьютинг, грид системы, DIRAC Interware, обработка данных.Просмотров за год: 3. -
Атомная визуализация алмазного резания
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 137-149Просмотров за год: 5. Цитирований: 33 (РИНЦ).Данная работа посвящена созданию статической атомной модели двух поверхностей, контактирующих при электроалмазной обработке: алмазных зерен и шлифуемого ими материала. В центре работы стоят вопросы компьютерной визуализации этих поверхностей на молекулярном уровне, поскольку традиционное математическое описание не обладает достаточной наглядностью для демонстрации некоторых аспектов атомистической трибологии резания металлов с одновременно протекающими разными по своей физической природе процессами. А в электроалмазной обработке сочетается воздействие одновременно нескольких процессов: механический, электрический и электрохимический. Поэтому предлагаемая авторами методика моделирования остается единственным способом увидеть, что именно происходит на атомном уровне при резании материала алмазным зерном. В то же время статья может быть полезна как научно-познавательная, так как позволяет читателю понять, как на атомном уровне выглядят поверхности некоторых материалов.
-
Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.
-
Повышение качества генерации маршрутов в SUMO на основе данных с детекторов с использованием обучения с подкреплением
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 137-146Данная работа предлагает новый подход к построению высокоточных маршрутов на основе данных от транспортных детекторов в пакете моделирования трафика SUMO. Существующие инструменты, такие как flowrouter и routeSampler, имеют ряд недостатков, таких как отсутствие взаимодействия с сетью в процессе построения маршрутов. Наш rlRouter использует мультиагентное обучение с подкреплением (MARL), где агенты — это входящие полосы движения, а окружающая среда — дорожная сеть. Добавляя в сеть транспортные средства с определенными маршрутами, агенты получают вознаграждение за сопоставление данных с детекторами транспорта. В качестве алгоритма мультиагентного обучения с подкреплением использовался DQN с разделением параметров между агентами и LSTM-слоем для обработки последовательных данных.
Поскольку rlRouter обучается внутри симуляции SUMO, он может лучше восстанавливать маршруты, принимая во внимание взаимодействие транспортных средств внутри сети друг с другом и с сетевой инфраструктурой. Мы смоделировали различные дорожные ситуации на трех разных перекрестках, чтобы сравнить производительность маршрутизаторов SUMO с rlRouter. Мы использовали среднюю абсолютную ошибку (MAE) в качестве меры отклонения кумулятивных данных детекторов и от данных маршрутов. rlRouter позволил добиться высокого соответствия данным с детекторов. Мы также обнаружили, что, максимизируя вознаграждение за соответствие детекторам, результирующие маршруты также становятся ближе к реальным. Несмотря на то, что маршруты, восстановленные с помощью rlRouter, превосходят маршруты, полученные с помощью инструментов SUMO, они не полностью соответствуют реальным из-за естественных ограничений петлевых детекторов. Чтобы обеспечить более правдоподобные маршруты, необходимо оборудовать перекрестки другими видами транспортных счетчиков, например, детекторами-камерами.
-
Автоматизированная проверка соответствия соглашений об обработке данных регламенту по защите данных
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1667-1685В современном мире соблюдение нормативных требований по защите данных, таких как GDPR, является ключевым для организаций. Другой важной проблемой, выявленной при анализе, является то, что соблюдение осложняется сложностью правовых документов и постоянными изменениями в регулировании. В данной статье описываются способы, с помощью которых NLP (обработка естественного языка) способствует упрощению соблюдения GDPR путем автоматического сканирования на соответствие, оценки политик конфиденциальности и повышения уровня прозрачности. Работа не ограничивается исследованием применения NLP для работы с политиками конфиденциальности и улучшения понимания обмена данными с третьими сторонами, но также проводит предварительные исследования для оценки различий между несколькими моделями NLP. В статье описывается реализация и исполнение моделей для выявления той, которая демонстрирует наилучшую производительность по эффективности и скорости автоматизации процесса проверки соответствия и анализа политики конфиденциальности. Кроме того, в исследовании обсуждаются возможности использования автоматических инструментов и анализа данных для соблюдения GDPR, например, создание машиночитаемых моделей, которые помогают в оценке соответствия. Среди моделей, оцененных в нашем исследовании, SBERT показала лучшие результаты на уровне политики с точностью 0,57, прецизионностью 0,78, полнотой 0,83 и F1-метрикой 0,80. Модель BERT продемонстрировала наивысшую производительность на уровне предложений, достигнув точности 0,63, прецизионности 0,70, полноты 0,50 и F1-метрики 0,55. Таким образом, данная статья подчеркивает важность NLP в помощи организациям преодолеть трудности соблюдения GDPR, создавая дорожную карту к более ориентированному на клиента режиму защиты данных. В этом отношении, сравнивая предварительные исследования и демонстрируя производительность лучших моделей, работа способствует усилению мер по соблюдению и защите прав личности в киберпространстве.
-
Перспективы использования космоснимков для прогнозирования загрязнения воздуха тяжелыми металлами
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 535-544Просмотров за год: 21.Контроль за загрязнением воздуха имеет большое значение для стран Европы и Азии. В рамках Конвенции ООН по дальнему трансграничному переносу воздушных загрязнений (СLRTAP) реализуется программа UNECE ICP Vegetation, направленная на определение наиболее неблагополучных областей, создание региональных карт и улучшение понимания природы долгосрочных трансграничных загрязнений. В Объединенном институте ядерных исследований была разработана облачная платформа, предоставляющая участникам программы ICP Vegetation удобные инструменты для сбора, анализа и обработки данных мониторинга. В настоящее время в системе содержится информация о более чем 6000 точках пробоотбора в 40 регионах различных стран Европы и Азии.
Важным этапом контроля является моделирование загрязнений в местах, где частота исследований или плотность покрытия сети сбора образцов недостаточны. Одним из подходов к прогнозированию загрязнений является использование специализированных статистических моделей и методов машинного обучения совместно с различными количественными показателями точек сбора образцов и информацией о концентрациях элементов. Наиболее перспективным источником количественных показателей для обучения моделей являются космические снимки в различных спектрах. Обученная должным образом модель позволит получать прогноз по концентрациям элементов, используя исключительно космоснимки. Специализированная платформа Google Earth Engine предоставляет широкие возможности для анализа и обработки данных от более чем 100 различных проектов дистанционного зондирования земли, удобный интерфейс разработчика на JavaScript и программный интерфейс на Python для использования в сторонних приложениях.
В работе рассматривается возможность использования статистических показателей космоснимков, полученных от платформы Google Earth Engine, совместно с данными мониторинга состояния окружающей среды проекта ICP Vegetation для обучения моделей, способных прогнозировать концентрацию тяжелых металлов в определенных регионах.
-
Цитокины как индикаторы состояния организма при инфекционных заболеваниях. Анализ экспериментальных данных
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1409-1426При заболеваниях человека в результате бактериального заражения для наблюдения за ходом болезни используются различные характеристики организма. В настоящее время одним из таких индикаторов принимается динамика концентраций цитокинов, вырабатываемых в основном клетками иммунной системы. В организме человека и многих видов животных присутствуют эти низкомолекулярные белки. Исследование цитокинов имеет важное значение для интерпретации нарушений функциональной состоятельности иммунной системы организма, оценки степени тяжести, мониторинга эффективности проводимой терапии, прогноза течения и исхода лечения. При заболевании возникает цитокиновый отклик организма, указывающий на характеристики течения болезни. Для исследования закономерностей такой индикации проведены эксперименты на лабораторных мышах. В работе анализируются экспериментальные данные о развитии пневмонии и лечении несколькими препаратами при бактериальном заражении мышей. В качестве препаратов использовались иммуномодулирующие препараты «Ронколейкин», «Лейкинферон» и «Тинростим». Данные представлены динамикой концентраций двух видов цитокинов в легочной ткани и крови животных. Многосторонний статистический и нестатистический анализ данных позволил выявить общие закономерности изменения концентраций цитокинов в организме и связать их со свойствами лечебных препаратов. Исследуемые цитокины «Интерлейкин-10» (ИЛ-10) и «Интерферон Гамма» (ИФН$\gamma$) у зараженных мышей отклоняются от нормального уровня интактных животных, указывая на развитие заболевания. Изменения концентраций цитокинов в группах лечимых мышей сравниваются с этими показателями в группе здоровых (не зараженных) мышей и группе зараженных нелеченных особей. Сравнение делается по группам особей, так как концентрации цитокинов индивидуальны и значительно отличаются у разных особей. В этих условиях только группы особей могут указать на закономерности процессов течения болезни. Эти группы мышей наблюдались в течение двух недель. Динамика концентраций цитокинов указывает на характеристики течения болезни и эффективность применяемых лечебных препаратов. Воздействие лечебного препарата на организмы отслеживается по расположению указанных групп особей в пространстве концентраций цитокинов. В этом пространстве используется расстояние Хаусдорфа между множествами векторов концентраций цитокинов у особей, основанное на евклидовом расстоянии между элементами этих множеств. Выяснено, что препараты «Ронколейкин» и «Лейкинферон» оказывают в целом сходное между собой и отличное от препарата «Тинростим» воздействие на течение болезни.
Ключевые слова: обработка данных, эксперимент, цитокин, иммунная система, пневмония, статистика, аппроксимация, расстояние Хаусдорфа. -
Разработка интеллектуальной системы определения объемно-весовых характеристик груза
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 437-450Промышленная обработка изображений или «машинное зрение» в настоящее время является ключевой технологией во многих отраслях, поскольку эта технология может использоваться для оптимизации различных процессов. Целью настоящей работы является создание программно-аппаратного комплекса измерения габаритно-весовых характеристик груза на базе интеллектуальной системы, основанной на нейросетевых способах идентификации, позволяющих преодолеть технологические ограничения аналогичных комплексов, реализованных на ультразвуковых и инфракрасных измерительных датчиках. Разрабатываемый комплекс будет производить измерения грузов без ограничения на объемные и весовые характеристики груза, который необходимо тарифицировать и сортировать в рамках работы складских комплексов. В состав системы будет входить интеллектуальная компьютерная программа, определяющая объемно-весовые характеристики груза с использованием технологии машинного зрения и экспериментальный образец стенда измерения объёма и веса груза.
Проведен анализ исследований, посвященных решению аналогичных задач. Отмечено, что недостатком изученных способов являются очень высокие требования к расположению камеры, а также необходимость ручной работы при вычислении размеров, автоматизировать которую не представляется возможным без существенных доработок. В процессе работы исследованы различные способы распознавания объектов на изображениях с целью проведения предметной фильтрации по наличию груза и измерения его габаритных размеров. Получены удовлетворительные результаты при применении камер, сочетающих в себе как оптический способ захвата изображений, так и инфракрасные датчики. В результате работы разработана компьютерная программа, позволяющая захватывать непрерывный поток с видеокамер Intel RealSense с последующим извлечением из обозначенной области трехмерный объект и вычислять габаритные размеры объекта. На данном этапе выполнено: проведен анализ методик компьютерного зрения; разработан алгоритм для реализации задачи автоматического измерения грузов с использованием специальных камер; разработано программное обеспечение, позволяющее получать габаритные размеры объектов в автоматическом режиме.
Данная разработка по завершении работы может применяться как готовое решение для транспортных компаний, логистических центров, складов крупных производственных и торговых предприятий.
-
Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





