Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.
-
Модели пространственной селекции при диаграммообразовании на основе позиционирования в сверхплотных сетях радиодоступа миллиметрового диапазона
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 195-216В работе решается задача установления зависимости потенциала пространственной селекции полезных и мешающих сигналов по критерию отношения «сигнал/помеха» от погрешности позиционирования устройств при диаграммообразовании по местоположению на базовой станции, оборудованной антенной решеткой. Конфигурируемые параметры моделирования включают планарную антенную решетку с различным числом антенных элементов, траекторию движения, а также точность определения местоположения по метрике среднеквадратического отклонения оценки координат устройств. В модели реализованы три алгоритма управления формой диаграммы направленности: 1) управление положением одного максимума и одного нуля; 2) управление формой и шириной главного лепестка; 3) адаптивная схема. Результаты моделирования показали, что первый алгоритм наиболее эффективен при числе элементов антенной решетки не более 5 и погрешности позиционирования не более 7 м, а второй алгоритм целесообразно использовать при числе элементов антенной решетки более 15 и погрешности позиционирования более 5 м. Адаптивное диаграммообразование реализуется по обучающему сигналу и обеспечивает оптимальную пространственную селекцию полезных и мешающих сигналов без использования данных о местоположении, однако отличается высокой сложностью аппаратной реализации. Скрипты разработанных моделей доступны для верификации. Полученные результаты могут использоваться при разработке научно обоснованных рекомендаций по управлению лучом в сверхплотных сетях радиодоступа миллиметрового диапазона пятого и последующих поколений.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"