Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'молекулярная динамика':
Найдено статей: 56
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 521-523
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  4. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 245-248
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  7. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1341-1343
  8. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 5-7
  9. Батгэрэл Б., Никонов Э.Г., Пузынин И.В.
    Процедура вывода явных, неявных и симметричных симплектических схем для численного решения гамильтоновых систем уравнений
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 861-871

    При моделировании методами классической молекулярной динамики поведения системы частиц используются уравнения движения в ньютоновской и гамильтоновой формулировке. При использовании уравнений Ньютона для получения координат и скоростей частиц системы, состоящей из $N$ частиц, требуется на каждом временном шаге в трехмерном случае решить $3N$ обыкновенных дифференциальных уравнений второго порядка. Традиционно для решения уравнений движения молекулярной динамики в ньютоновской формулировке используются численные схемы метода Верле. Для сохранения устойчивости численных схем Верле на достаточно больших интервалах времени приходится уменьшать шаг интегрирования. Это приводит к существенному увеличению объема вычислений. В большинстве современных пакетов программ молекулярной динамики для численного интегрирования уравнений движения используют схемы метода Верле с контролем сохранения гамильтониана (энергии системы) по времени. Для уменьшения времени вычислений при молекулярно-динамических расчетах можно использовать два дополняющих друг друга подхода. Первый основан на совершенствовании и программной оптимизации существующих пакетов программ молекулярной динамики с использованием векторизации, распараллеливания, спецпроцессоров. Второй подход основан на разработке эффективных методов численного интегрирования уравнений движения. В работе предложена процедура построения явных, неявных и симметричных симплектических численных схем с заданной точностью аппроксимации относительно шага интегрирования для решения уравнений движения молекулярной динамики в гамильтоновой форме. В основе подхода для построения предложенной в работе процедуры лежат следующие положения: гамильтонова формулировка уравнений движения, использование разложения точного решения в ряд Тейлора, использование для вывода численных схем аппарата производящих функций для сохранения геометрических свойств точного решения. Численные эксперименты показали, что полученная в работе симметричная симплектическая схема третьего порядка точности сохраняет в приближенном решении основные свойства точного решения, является более устойчивой по шагу аппроксимации и более точно сохраняет гамильтониан системы на большом интервале интегрирования, чем численные схемы метода Верле второго порядка.

    Просмотров за год: 11.
  10. Джораев А.Р.
    Гибридные вычислительные системы на основе GPU для задач биоинформатики
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 163-167

    Статья посвящена преимуществам применения гибридных вычислительных систем на основе графических процессоров NVIDIA для решения задач моделирования молекулярной динамики, квантовой химии, секвенирования, приведены примеры приложений.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.