Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'модели':
Найдено статей: 764
  1. Андреева А.А., Ананд М., Лобанов А.И., Николаев А.В., Пантелеев М.А.
    Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951

    Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.

    В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.

    Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.

  2. Мельникова И.В., Бовкун В.А.
    Связь между дискретными финансовыми моделями и непрерывными моделями с процессами Винера и Пуассона
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 781-795

    Работа посвящена исследованию связей между дискретными и непрерывными моделями финансовых процессов и их вероятностных характеристик. Во-первых, установлена связь между процессами цен акций, хеджирующего портфеля и опционов в моделях, обусловленных биномиальными возмущениями и предельными для них возмущениями типа броуновского движения. Во-вторых, указаны аналоги в коэффициентах стохастических уравнений с различными случайными процессами, непрерывными и скачкообразными, и в коэффициентах соответствующих детерминированных уравнений для их вероятностных характеристик.

    Изложение результатов исследования связей и нахождения аналогий, полученных в настоящей работе, привело к необходимости адекватного изложения предварительных сведений и результатов из финансовой математики, а также описания связанных с ней объектов стохастического анализа.

    В работе частично новые и известные результаты изложены в доступной форме для тех, кто не является специалистом по финансовой математике и стохастическому анализу и кому эти результаты важны с точки зрения приложений. Конкретно, представлены следующие разделы.

    • В одно- и $n$-периодных биномиальных моделях предложен единый подход к определению на вероятностном пространстве риск-нейтральной меры, с которой дисконтированная цена опциона становится мартингалом. Полученная мартингальная формула для цены опциона пригодна для численного моделирования. В следующих разделах подход на основе риск-нейтральных мер применяется для исследования финансовых процессов в моделях непрерывного времени.

    • В непрерывном времени рассмотрены модели цены акций, хеджирующего портфеля и опциона в форме стохастических уравнений с интегралом Ито по броуновскому движению и по компенсированному процессу Пуассона. Изучение свойств процессов, являющихся решениями стохастических уравнений, в этом разделе опирается на один из центральных объектов стохастического анализа — формулу Ито, методике применения которой уделено особое внимание.

    • Представлена знаменитая формула Блэка –Шоулза, дающая решение уравнения в частных производных для функции $v(t, x)$, которая при подстановке $x = S (t)$, где $S(t)$ — цена акций в момент времени $t$, дает цену опциона в модели с непрерывным возмущением броуновским движением.

    • Предложен аналог формулы Блэка – Шоулза для случая модели со скачкообразным возмущением процессом Пуассона. Вывод этой формулы опирается на технику риск-нейтральных мер и лемму независимости.

  3. Дубинина М.Г.
    Пространственно-временные модели распространения информационно-коммуникационных технологий
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712

    В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.

    Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.

  4. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

  5. Горбачев О.Г.
    Вероятностно-статистическая модель страхового капитала
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 231-235

    Обоснована необходимость введения в научный оборот новой экономической категории – страховой капитал. Показано, что страховая деятельность порождает специальную разновидность капитала (как фактора производства) – гарантийный фонд, который назван автором «основной денежный страховой капитал». Установлено, что наряду с общепринятыми свойствами капитала как фактора производства страховой капитал обладает рядом специфических свойств, обусловленных его вероятностно-статистической природой. На основе вероятностно-статистической модели исследована роль страхового капитала в формировании цены на страховую услугу. В частности, показано, что закон убывающей отдачи для страхового капитала не носит универсального характера.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  6. Абдуллатыпов А.В., Цыганков А.А.
    Моделирование пространственной структуры гидрогеназы HydSL пурпурной серной бактерии Thiocapsa roseopersicina BBS
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 737-747

    В данной работе представлены модели железоникелевой гидрогеназы HydSL пурпурной серной бактерии Thiocapsa roseopersicina BBS. Показано, что полученные модели обладают более высоким уровнем доверия по сравнению с опубликованными ранее; впервые получена полноразмерная модель HydSL-гидрогеназы. Показана свободная ориентация С-концевого фрагмента малой субъединицы относительно основной белковой глобулы. Показано, что у термостабильной гидрогеназы HydSL Allochromatium vinosum и у полученной нами модели примерно одинаковое количество межсубъединичных ионных пар и их больше, чем у термолабильной гидрогеназы HydAB Desulfovibrio vulgaris.

    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
  7. Каменев Г.К., Каменев И.Г.
    Многокритериальный метрический анализ данных при моделировании человеческого капитала
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1223-1245

    В статье описываетсявы числимаям одель человека в информационной экономике и демонстрируется многокритериальный оптимизационный подход к метрическому анализу модельных данных. Традиционный подход к идентификации и исследованию модели предполагает идентификацию модели по временным рядам и прогнозирование дальнейшей динамики ряда. Однако этот подход неприменим к моделям, некоторые важнейшие переменные которых не наблюдаютсяя вно, и известны только некоторые типичные границы или особенности генеральной совокупности. Такая ситуация часто встречается в социальных науках, что делает модели сугубо теоретическими. Чтобы избежать этого, для (неявной) идентификации и изучения таких моделей предлагается использовать метод метрического анализа данных (MMDA), основанный на построении и анализе метрических сетей Колмогорова – Шеннона, аппроксимирующих генеральную совокупность данных модельной генерации в многомерном пространстве социальных характеристик. С помощью этого метода идентифицированы коэффициенты модели и изучены особенности ее фазовых траекторий. Представленнаяв статье модель рассматривает человека как субъекта, обрабатывающего информацию, включая его информированность и когнитивные способности. Составлены пожизненные индексы человеческого капитала: креативного индивида (обобщающего когнитивные способности) и продуктивного (обобщает объем освоенной человеком информации). Поставлена задача их многокритериальной (двухкритериальной) оптимизации с учетом ожидаемой продолжительности жизни. Такой подход позволяет выявить и экономически обосновать требования к системе образования и социализации (информационному окружению) человека до достиженияим взрослого возраста. Показано, что в поставленной оптимизационной задаче возникает Парето-граница, причем ее тип зависит от уровня смертности: при высокой продолжительности жизни доминирует одно решение, в то время как для более низкой продолжительности жизни существуют различные типы Парето-границы. В частности, в случае России применим принцип Парето: значительное увеличение креативного человеческого капитала индивида возможно за счет небольшого сниженияпр одуктивного человеческого капитала (обобщение объема освоенной человеком информации). Показано, что рост продолжительности жизни делает оптимальным компетентностный подход, ориентированный на развитие когнитивных способностей, в то время как при низкой продолжительности жизни предпочтительнее знаниевый подход.

  8. В статье обсуждается проблема влияния целей исследования на структуру многофакторной модели регрессионного анализа (в частности, на реализацию процедуры снижения размерности модели). Демонстрируется, как приведение спецификации модели множественной регрессии в соответствие целям исследования отражается на выборе методов моделирования. Сравниваются две схемы построения модели: первая не позволяет учесть типологию первичных предикторов и характер их влияния на результативные признаки, вторая схема подразумевает этап предварительного разбиения исходных предикторов на группы (в соответствии с целями исследования). На примере решения задачи анализа причин выгорания творческих работников показана важность этапа качественного анализа и систематизации априори отобранных факторов, который реализуется не вычислительными средствами, а за счет привлечения знаний и опыта специалистов в изучаемой предметной области.

    Представленный пример реализации подхода к определению спецификации регрессионной модели сочетает формализованные математико-статистические процедуры и предшествующий им этап классификации первичных факторов. Наличие указанного этапа позволяет объяснить схему управляющих (корректирующих) воздействий (смягчение стиля руководства и усиление одобрения приводят к снижению проявлений тревожности и стресса, что, в свою очередь, снижает степень выраженности эмоционального истощения участников коллектива). Предварительная классификация также позволяет избежать комбинирования в одной главной компоненте управляемых и неуправляемых, регулирующих и управляемых признаков-факторов, которое могло бы ухудшить интерпретируемость синтезированных предикторов.

    На примере конкретной задачи показано, что отбор факторов-регрессоров — это процесс, требующий индивидуального решения. В рассмотренном случае были последовательно использованы: систематизация признаков, корреляционный анализ, метод главных компонент, регрессионный анализ. Первые три метода позволили существенно сократить размерность задачи, что не повлияло на достижение цели, для которой эта задача была поставлена: были показаны существенные меры управляющего воздействия на коллектив, позволяющие снизить степень эмоционального выгорания его участников.

  9. Тимирьянова В.М., Лакман И.А., Ларькин М.М.
    Прогнозирование розничной торговли на высокочастотных обезличенных данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1713-1734

    Развитие технологий определяет появление данных с высокой детализацией во времени и пространстве, что расширяет возможности анализа, позволяя рассматривать потребительские решения и конкурентное поведение предприятий во всем их многообразии, с учетом контекста территории и особенностей временных периодов. Несмотря на перспективность таких исследований, в настоящее время в научной литературе они представлены ограниченно, что определяется их особенностями. С целью их раскрытия в статье обращается внимание на ключевые проблемы, возникающие при работе с обезличенными высокочастотными данными, аккумулируемыми фискальными операторами, и направления их решения, проводится спектр тестов, направленный на выявление возможности моделирования изменений потребления во времени и пространстве. Особенности нового вида данных рассмотрены на примере реальных обезличенных данных, полученных от оператора фискальных данных «Первый ОФД» (АО «Энергетические системы и коммуникации»). Показано, что одновременно со спектром свойственных высокочастотным данным проблем существуют недостатки, связанные с процессом формирования данных на стороне продавцов, требующие более широкого применения инструментов интеллектуального анализа данных. На рассматриваемых данных проведена серия статистических тестов, включая тест на наличие ложной регрессии, ненаблюдаемых эффектов в остатках модели, последовательной корреляции и кросс-секционной зависимости остатков панельной модели, авторегрессии первого порядка в случайных эффектах, сериальной корреляции на первых разностях панельных данных и др. Наличие пространственной автокорреляции данных тестировалось с помощью модифицированных тестов множителей Лагранжа. Проведенные тесты показали наличие последовательной корреляции и пространственной зависимости данных, обуславливающих целесообразность применения методов панельного и пространственного анализа применительно к высокочастотным данным, аккумулируемым фискальными операторами. Построенные модели позволили обосновать пространственную связь роста продаж и ее зависимость от дня недели. Ограничением для повышения предсказательной возможности построенных моделей и последующего их усложнения, за счет включения объясняющих факторов, стало отсутствие в открытом доступе статистики, сгруппированной в необходимой детализации во времени и пространстве, что определяет актуальность формирования баз высокочастотных географически структурированных данных.

  10. Ветрин Р.Л., Коберг К.
    Обучение с подкреплением при оптимизации параметров торговой стратегии на финансовых рынках
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1793-1812

    Высокочастотная алгоритмическая торговля — это подкласс трейдинга, ориентированный на получение прибыли на субсекундных временных интервалах. Такие торговые стратегии не зависят от большинства факторов, подходящих для долгосрочной торговли, и требуют особого подхода. Было много попыток использовать методы машинного обучения как для высоко-, так и для низкочастотной торговли. Однако они по-прежнему имеют ограниченное применение на практике из-за высокой подверженности переобучению, требований к быстрой адаптации к новым режимам рынка и общей нестабильности результатов. Мы провели комплексное исследование по сочетанию известных количественных теорий и методов обучения с подкреплением, чтобы вывести более эффективный и надежный подход при построении автоматизированной торговой системы в попытке создать поддержку для известных алгоритмических торговых техник. Используя классические теории поведения цен, а также современные примеры применения в субмиллисекундной торговле, мы применили модели обучения с усилением для улучшения качества алгоритмов. В результате мы создали надежную модель, использующую глубокое обучение с усилением для оптимизации параметров статических торговых алгоритмов, способных к онлайн-обучению на живых данных. Более конкретно, мы исследовали систему на срочном криптовалютном рынке, который в основном не зависит от внешних факторов в краткосрочной перспективе. Наше исследование было реализовано в высокочастотной среде, и итоговые модели показали способность работать в рамках принятых таймфреймов высокочастотной торговли. Мы сравнили различные комбинации подходов глубинного обучения с подкреплением и классических алгоритмов и оценили устойчивость и эффективность улучшений для каждой комбинации.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.