Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.
Ключевые слова: игра Гермейера, игра Штакельберга, иерархия, имитационное моделирование, инновационное развитие, побуждение, принуждение.Просмотров за год: 9. Цитирований: 6 (РИНЦ). -
Зависимость работы организации от ее организационной структуры в ходе неожиданных и тлеющих кризисов
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 685-706Просмотров за год: 2. Цитирований: 2 (РИНЦ).В работе описана математическая модель функционирования организации с иерархической структурой управления на ранней стадии кризиса. Особенность развития этой стадии кризиса заключается в наличии так называемых сигналов раннего предупреждения, которые несут информацию о приближении нежелательного явления. Сотрудники организации способны улавливать эти сигналы и на их основе подготавливать ее к наступлению кризиса. Эффективность такой подготовки зависит как от параметров организации, так и от параметров кризисного явления. Предлагаемая в статье имитационная агентная модель реализована на языке программирования Java. Эта модель используется по методу Монте-Карло для сравнения децентрализованных и централизованных организационных структур, функционирующих в ходе неожиданных и тлеющих кризисов. Централизованными мы называем структуры с большим количеством уровней иерархии и малым количеством подчиненных у каждого руководителя, а децентрализованными — структуры с малым количеством уровней иерархии и большим количеством подчиненных у каждого руководителя. Под неожиданным кризисом понимается кризис со скоротечной ранней стадией и малым количеством слабых сигналов, а под тлеющим кризисом — кризис с длительной ранней стадией и большим количеством сигналов, не всегда несущих важную информацию. Эффективность функционирования организации на ранней стадии кризиса измеряется по двум параметрам: проценту сигналов раннего предупреждения, по которым были приняты решения для подготовки организации, и доле времени, отведенного руководителем организации на работу с сигналами. По результатам моделирования выявлено, что централизованные организации обрабатывают больше сигналов раннего предупреждения при тлеющих кризисах, а децентрализованные — при неожиданных кризисах. С другой стороны, занятость руководителя организации в ходе неожиданных кризисов выше для децентрализованных организаций, а в ходе тлеющих кризисов — для централизованных. В итоге, ни один из двух классов организаций не является более эффективным в ходе изученных типов кризисов сразу по обоим параметрам. Полученные в работе результаты проверены на устойчивость по параметрам, описывающим организацию и сотрудников.
-
Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963Просмотров за год: 10. Цитирований: 1 (РИНЦ).В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.
Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.
-
Оптимизационный подход к имитационному моделированию микроструктур
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 597-606В работе предложен оптимизационный подход к имитационному моделированию микроструктур. Решены задачи оптимизации функции пористости, поиска оптимальной модели гранулометрического состава и введен критерий качества моделирования. Проведена проверка адекватности предложенных методов на примерах и предложена регрессионная модель качества имитационного моделирования микроструктур. Актуальным приложением предложенного подхода является задача 3D-реконструкции микроструктуры керна. Полученные результаты дают основания для продолжения исследований в выбранном направлении.
Ключевые слова: имитационное моделирование микроструктур, плотная упаковка, оптимизация, 3D-реконструкция.Просмотров за год: 4. Цитирований: 7 (РИНЦ). -
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492Просмотров за год: 12.В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
-
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
-
Долгосрочная макромодель мировой динамики на основе эмпирических данных
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 883-891Просмотров за год: 4. Цитирований: 3 (РИНЦ).В работе обсуждаются методические основы и проблемы моделирования мировой динамики. Излагаются подходы к построению новой имитационной модели глобального развития и первичные результаты моделирования. В основу построения модели положен эмпирический подход, основанный на анализе статистики основных социально-экономических показателей. На основании этого анализа выделены основные переменные. Для этих переменных составлены динамические уравнения (в непрерывно-дифференциальной форме). Связи между переменными подбирались исходя из динамики соответствующих показателей в прошлом и на основании экспертных оценок, при этом использовались эконометрические методы, основанные на регрессионном анализе. Были проведены расчеты по полученной системе динамических уравнений, результаты представлены в виде пучка траекторий для тех показателей, которые непосредственно наблюдаемы и по которым имеется статистика. Таким образом, имеется возможность оценить разброс траекторий и понять прогнозные возможности представленной модели.
-
Разработка оптимизационной имитационной модели для поддержки процессов планирования складских систем
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 295-307Просмотров за год: 2. Цитирований: 3 (РИНЦ).В статье рассматриваются вопросы применения метода оптимизации для поддержки процессов планирования складских системах с помощью технологии имитационного моделирования. Исследованы механизмы взаимосвязи оптимизационной и имитационной моделей, а также подробно описан алгоритм разработки оптимизационной имитационной модели складской системы для поддержки процессов планирования.
-
Об одном подходе к имитационному моделированию спортивной игры с непрерывным временем
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 455-460Просмотров за год: 3. Цитирований: 2 (РИНЦ).Работа посвящена обсуждению методов статистического моделирования исходов спортивных соревнований вообще и спортивной игры с непрерывным временем в частности. Предложен основанный на имитационном моделировании хода такой игры подход к предсказанию результата игры, представляющий собой некоторый промежуточный вариант между чистым статистическим моделированием и агентным моделированием действий отдельных игроков, участвующих в матче. Приведен пример ретроспективного прогноза на основе предложенной модели.
-
Методика имитационного моделирования на основе обучающих данных для двухфазного течения в гетерогенной пористой среде
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 779-792Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





