Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 6.
- Просмотров за год: 20.
-
Метод численного решения одной стационарной задачи гидродинамики в конвективной форме в $L$-образной области
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1291-1306Большой класс задач описывает физические процессы, протекающие в невыпуклых областях, содержащих угол больший 180 градусов на границе. Решение в окрестности такого угла сингулярно, а его отыскание, при использовании классических подходов, влечет за собой потерю точности. В представленной работе рассмотрены стационарные, линеаризованные с помощью итераций Пикара несжимаемые уравнения Навье – Стокса течения вязкой жидкости в конвективной форме в $L$-образной области. Определено $R_\nu$-обобщенное решение задачи в специальных множествах весовых пространств. Для нахождения приближенного $R_\nu$-обобщенного решения построен специальный метод конечных элементов. Во-первых, пространства конечно-элементных функций удовлетворяют закону сохранения массы в сильном смысле, то есть в узлах сетки. Для этой цели используется Скотт – Вогелиус конечно-элементная пара. Выполнение закона сохранения массы ведет к отысканию более точного с физической точки зрения решения. Во-вторых, базисные функции конечномерных пространств дополнены весовыми функциями как множителями, которые совпадают с расстоянием от точки до вершины тупого угла в $\delta$-окрестности точки сингулярности и радиусом $\delta$ вне ее. Степень весовой функции, как и параметр $\nu$ в определении $R_\nu$-обобщенного решения, так и радиус $\delta$-окрестности точки сингулярности являются свободными параметрами метода. Специально подобранная их комбинация приводит к увеличению порядка сходимости приближенного решения к точному решению задачи почти в два раза по сравнению с классическими подходами и достигает единицы по шагу сетки в нормах весовых пространств Соболева. Таким образом, установлено, что скорость сходимости не зависит от величины угла.
Ключевые слова: задача гидродинамики с сингулярностью, весовой метод конечных элементов. -
Исследование возможности обнаружения следов опасных веществ на основе детекции паров
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 451-463В статье исследуется возможность обнаружения следов опасных веществ (взрывчатых и наркотических) на основе детекции их паров в воздухе. Актуальность работы обусловлена задачами противодействия террористическим угрозам и наркотрафику, где критически важно определять даже следовые количества веществ. Основное внимание уделено математическому моделированию испарения тонкого слоя вещества с поверхности, основанному на молекулярно-кинетической теории. Предложена универсальная модель, учитывающая физико-химические свойства веществ, температуру окружающей среды, адгезию к поверхности и начальную массу слоя. На основе уравнений Герца – Кнудсена – Ленгмюра и Клаузиуса – Клапейрона получены аналитические выражения для времени полного испарения, предельной массы паров и динамики процесса. Выявлен безразмерный параметр $\gamma$, определяющий предельные условия испарения. Показано, что адгезия вещества (коэффициент $\alpha$) влияет на скорость испарения, но не на конечную массу паров. Проведены расчеты для шести модельных веществ (TNT, RDX, PETN, амфетамин, кокаин, героин) с широким диапазоном свойств. Установлено, что при комнатной температуре и поверхностной концентрации 100 нг/см2 большинство веществ испаряются полностью, за исключением RDX, который остается на поверхности на 84%. Время испарения варьируется от долей секунды (амфетамин) до нескольких часов (героин). Для веществ с низкой летучестью определена максимальная масса, способная испариться при заданных условиях. Новизна работы заключается в разработке универсальной модели, применимой для широкого класса опасных веществ, и в выявлении ключевых параметров, определяющих процесс испарения. Полученные результаты позволяют оценить пределы обнаружения следов веществ методами, основанными на регистрации паров, и могут быть использованы при проектировании систем безопасности.
Ключевые слова: тонкий слой, испарение, опасные вещества, масса паров, поверхностная концентрация, математическая модель. -
О компьютерных экспериментах Касмана
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 503-513Просмотров за год: 23.В 2007 году Касман провел серию оригинальных компьютерных экспериментов с кинками уравнения синус-Гордона, движущимися вдоль искусственных последовательностей ДНК. Были рассмотрены две последовательности. Каждая состояла из двух частей, разделенных границей. Левая часть первой из последовательностей содержала повторяющиеся триплеты TTA, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты CGC, кодирующие аргинины. Во второй последовательности левая часть содержала повторяющиеся триплеты CTG, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты AGA, кодирующие аргинины. При моделировании движения кинка в этих последовательностях был обнаружен интересный эффект. Оказалось, что кинк, движущийся в одной из последовательностей, останавливался, не достигнув конца, а затем «отскакивал», как будто ударялся об стенку. В то же время в другой последовательности движение кинка не прекращалось в течение всего времени проведения эксперимента. В этих компьютерных экспериментах, однако, использовалась простая модель ДНК, предложенная Салерно. Она учитывает различия во взаимодействиях комплементарных оснований внутри пар, но пренебрегает различием в моментах инерции азотистых оснований и расстояниях между центрами масс оснований и сахарно-фосфатной цепочкой. Вопрос о том, сохранится ли эффект Касмана при использовании более точных моделей ДНК, до сих пор остается открытым. В настоящей работе мы исследуем эффект Касмана на основе более точной модели ДНК, которая учитывает оба эти различия. Мы получили энергетические профили последовательностей Касмана и построили траектории движения кинков, запущенных в этих последовательностях при разных начальных значениях энергии. Результаты наших исследований подтвердили существование эффекта Касмана, но только в ограниченном интервале начальных значений энергии кинков и при определенном направлении движения кинков. В других случаях этот эффект не наблюдался. Мы обсудили, какие из исследованных последовательностей энергетически были более предпочтительны для возбуждения и распространения кинков.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"