Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'косимметрия':
Найдено статей: 12
  1. Цибулин В.Г., Хосаева З.Х.
    Математическая модель дифференциации общества с социальной напряженностью
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012

    В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.

    Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.

    Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.

  2. Ха Д.Т., Цибулин В.Г.
    Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466

    Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.

Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.