Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 6.
- Просмотров за год: 20.
-
Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия»
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 135-146Просмотров за год: 1. Цитирований: 7 (РИНЦ).В данной работе проведено исследование возникновения диффузионной неустойчивости в системе из трех уравнений типа «реакция–диффузия». В общем виде получены условия как тьюринговской, так и волновой неустойчивостей. Выявлены качественные свойства, которыми должна обладать система для того, чтобы в ней могла произойти та или другая бифуркация. В численных экспериментах показано, что при выполнении соответствующих условий в нелинейной модели возникают структуры, которые предсказываются линейным анализом.
-
Исследование механизмов формирования сегментированных волн в активных средах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 533-542Цитирований: 3 (РИНЦ).В данной работе предложены три возможных механизма формирования сегментированных волн и спиралей. Структуры такого рода были обнаружены в реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT. Первый механизм обусловлен взаимодействием двух подсистем, одна из которых возбудима, а другая неустойчива по Тьюрингу. Показано, как под воздействием поперечной неустойчивости из однородной гладкой спиральной волны формируется сегментированная спираль. В зависимости от свойств подсистем мы демонстрируем несколько различных по виду и форме сегментированных спиральных волн. В качестве второго механизма мы предлагаем «дробление» бегущей волны в окрестности бифуркационной точки коразмерности два, в которой пересекаются границы тьюринговской и волновой неустойчивостей. Наконец, мы показываем, что сегментированные волны могут возникать в некоторых простых двухкомпонентных моделях типа «реакция–диффузия», имеющих более одного стационарного состояния, в частности, в модели ФитцХью–Нагумо.
-
Исследование формирования структур Тьюринга под влиянием волновой неустойчивости
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 397-412Просмотров за год: 21.Рассматривается классическая для нелинейной динамики модель «брюсселятор», дополненная третьей переменной, играющей роль быстро диффундирующего ингибитора. Модель исследуется в одномерном случае в области параметров, где проявляются два типа диффузионной неустойчивости однородного стационарного состояния системы: волновая неустойчивость, приводящая к самопроизвольному формированию автоволн, и неустойчивость Тьюринга, приводящая к самопроизвольному формированию стационарных диссипативных структур, или структур Тьюринга. Показано, что благодаря субкритическому характеру бифуркации Тьюринга взаимодействие двух неустойчивостей в данной системе приводит к самопроизвольному формированию стационарных диссипативных структур еще до прохождения бифуркации Тьюринга. В ответ на различные случайные шумовые возмущения пространственно-однородного стационарного состояния в исследуемой параметрической области в окрестности точки двойной бифуркации в системе могут устанавливаться различные режимы: как чистые, состоящие только из стационарных или только автоволновых диссипативных структур, так и смешанные, при которых разные режимы проявляются в разных участках расчетного пространства. В рассматриваемой параметрической области система является мультистабильной и проявляет высокую чувствительность к начальным шумовым условиям, что приводит к размытию границ между качественно разными режимами. При этом даже в зоне доминирования смешанных режимов с преобладанием структур Тьюринга значительную вероятность имеет установление чистого автоволнового режима. В случае установившихся смешанных режимов достаточно сильное локальное возмущение в участке расчетного пространства, где проявляется автоволновой режим, может инициировать локальное формирование новых стационарных диссипативных структур. Локальное возмущение стационарного однородного состояния в исследуемой области параметрического пространства приводит к качественно схожей карте устоявшихся режимов, при этом зона доминирования чистых автоволновых режимов расширяется с увеличением амплитуды локального возмущения. В двумерном случае в системе не устанавливаются смешанные режимы. При эволюции системы в случае появления локальных структур Тьюринга под воздействием автоволнового режима со временем они заполняют все расчетное пространство.
-
Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.
Ключевые слова: высокоскоростное смешивание слоев, число Маха, уравнения Навье – Стокса, двухжидкостная модель, метод SIMPLE.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"