Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'дерево решений':
Найдено статей: 14
  1. Ветчанин Е.В., Тененев В.А., Шаура А.С.
    Управление движением жесткого тела в вязкой жидкости
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 659-675

    Решена задача оптимального управления движением мобильного объекта с внешней жесткой оболочкой вдользаданной траектории в вязкой жидкости. Рассматриваемый мобильный робот обладает свойством самопродвижения. Самопродвижение осуществляется за счет возвратнопоступательных колебаний внутренней материальной точки. Оптимальное управление движением построено на основе системы нечеткого логического вывода Сугено. Для получения базы нечетких правил предложен подход, основанный на построении деревьев решений с помощью разработанного генетического алгоритма структурно-параметрического синтеза.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  2. Соловьев С.А., Роуз Д., Дзюблик И.В., Трохименко Е.П.
    Прогностические модели эффективности и медицинского значения вакцинации противоротавирусной вакциной в Украине
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 407-421

    Представлены результаты расчетно-теоретических исследований, связанных с оценкой эффективности и медицинского значения вакцинации противоротавирусной вакциной в Украине. Искомые показатели – генотип-специфическая эффективность вакцины, число предотвращенных острых случаев заболевания, госпитализаций, амбулаторных визитов и смертей – получены применением математического моделирования и реализацией полученной модели на компьютере в виде дерева принятия решений на основе марковской модели. Результаты моделирования показали значительный положительный эффект вакцинации по сравнению с невакцинацией при учете достаточного охвата вакциной населения Украины.

    Просмотров за год: 2.
  3. Алгоритмы декомпозиции являются методами решения NP-трудных задач дискретной оптимизации (ДО). В этой статье демонстрируется один из перспективных методов, использующих разреженность матриц, — локальной элиминационный алгоритм в параллельной интерпретации (ЛЭАП). Это алгоритм структурной из декомпозиции на основе графа, который позволяет найти решение поэтапно таким образом, что каждый последующих этапов использует результаты предыдущих этапов. В то же время ЛЭАП сильно зависит от порядка элиминации, который фактически является стадиями решения. Также в статье рассматриваются древовидный и блочный тип распараллеливания для ЛЭАП и необходимые процессы их реализации.

    Просмотров за год: 1.
  4. Лотарев Д.Т.
    Размещение точек Штейнера в дереве Штейнера на плоскости средствами MatLab
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 707-713

    Рассматривается способ локализации точек Штейнера средствами MatLab в задаче Штейнера с потоком на евклидовой плоскости, когда соединяемые точки лежат в вершинах четырех-, пяти- или шестиугольника. Матрица смежности считается заданной. Метод использует способ решения трехточечной задачи Штейнера, в которой дерево Штейнера связывает три точки. Представлена визуализация най- денных решений.

    Просмотров за год: 4.
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.