Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'вычисления большого объема.':
Найдено статей: 21
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 201-203
    Просмотров за год: 29.
  3. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 559-561
    Просмотров за год: 4.
  4. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  7. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
  8. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  9. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 385-387
  10. Киселев М.В., Урусов А.М., Иваницкий А.Ю.
    Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400

    Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.