Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 4.
-
Секционная модель несвободного роста дерева
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 307-322Представлена трехмерная секционная модель динамики биомассы дерева, растущего на ограниченной территории. Структура трехмерного дерева состоит из секций, периодически возникающих на макушке дерева и одновременно дающих начало виртуальным «деревьям», последовательно вложенным в своих предшественников. Зеленая биомасса секций есть разность смежных виртуальных деревьев. Секции имеют динамику, отличную от динамики самого дерева, и их биомасса со временем постепенно отмирает (в том числе и в условиях свободного роста дерева), что объясняет оголение ствола снизу. В 3D-модели динамики биомассы несвободно растущего дерева для описания динамики биомассы секций и составляющих их секторов используются уравнения, аналогичные предложенным для 2D-модели дерева. Представлены примеры динамики биомассы секторов, секций и дерева. Динамика годографов азимутального распределения биомассы секции демонстрирует, что нижние секции дерева, растущего на ограниченной территории, находятся в угнетении и отмирают (более быстро по сравнению с моделью свободно растущего дерева), а на макушке дерева появляются и растут свободно новые секции. В результате вверх по стволу двигается волна биомассы дерева.
Ключевые слова: двумерная модель, динамика биомассы, несвободно растущее дерево, секционная модель, конкуренция в сообществе.Просмотров за год: 1. Цитирований: 1 (РИНЦ). -
Академическая сеть как возбудимая среда
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 177-183Просмотров за год: 6.В работе проведено моделирование распространения некой идеи в профессиональной виртуальной группе. Мы рассматриваем распространение возбуждения в неоднородной возбудимой среде высокой связности. Предполагается, что элементы сети образуют полный граф. Параметры элементов распределены по нормальному закону. Моделирование показало, что в зависимости от параметров в виртуальной группе интерес к идее может затухать или испытывать колебания. Наличие в сети постоянно возбужденного элемента достаточно высокой активности приводит к хаотизации — доля членов сообщества, активно интересующихся идеей, меняется нерегулярно.
-
Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.
-
Российские участники добровольных распределенных вычислений на платформе BOINC. Статистика участия
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 727-734Просмотров за год: 4. Цитирований: 4 (РИНЦ).В статье рассмотрено сообщество российских участников добровольных распределенных вычислений (ДРВ), реализуемых на открытой программной платформе BOINC. Для проведения статистического анализа активности российских участников ДРВ использованы данные, полученные при работе с API BOINC, приложением BOINC, и сайтом boincstats.com. Скрипт для получения данных и создания соответствующей базы данных с этого сайта был написан на PHP, для хранения данных, использовались базы данных MySQL.
В базе данных были аккумулированы показатели по всем российским проектам, включая архивные, что позволило рассчитать показатели, характеризующие поведение российских участников во всех проектах и командах BOINC — абсолютное и относительное количество российских участников, активность участия, количество привнесенных очков в систему, количество участников в каждом из российских проектов, заинтересованность участников в концепции ДРВ.
Показано, что позиции России в рейтинге стран очень низки и сохраняются практически на одном уровне в течение 4 лет. По мнению авторов исследования, низкие показатели поведения российских участников ДРВ, обусловлены индивидуализмом и закрытостью российских Интернет-пользователей, а также малым интересом к развитию фундаментального научного знания, научному поиску, что, возможно, связано с низким авторитетом как науки в целом, так и гражданской науки, краудсорсинга, в частности, и, соответственно, недостаточном распространении идей использования механизма добровольных распределённых вычислений для реализации исследовательских проектов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"