Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'большие языковые модели':
Найдено статей: 5
  1. Профессору Дмитрию Сергеевичу Чернавскому — 90 лет
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 3-8
    Просмотров за год: 28.
  2. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 5-8
  3. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 757-760
  4. Интерпретируемость моделей глубокого обучения стала центром исследований, особенно в таких областях, как здравоохранение и финансы. Модели с «бутылочным горлышком», используемые для выявления концептов, стали перспективным подходом для достижения прозрачности и интерпретируемости за счет использования набора известных пользователю понятий в качестве промежуточного представления перед слоем предсказания. Однако ручное аннотирование понятий не затруднено из-за больших затрат времени и сил. В нашей работе мы исследуем потенциал больших языковых моделей (LLM) для создания высококачественных банков концептов и предлагаем мультимодальную метрику для оценки качества генерируемых концептов. Мы изучили три ключевых вопроса: способность LLM генерировать банки концептов, сопоставимые с существующими базами знаний, такими как ConceptNet, достаточность унимодального семантического сходства на основе текста для оценки ассоциаций концептов с метками, а также эффективность мультимодальной информации для количественной оценки качества генерации концептов по сравнению с унимодальным семантическим сходством концепт-меток. Наши результаты показывают, что мультимодальные модели превосходят унимодальные подходы в оценке сходства между понятиями и метками. Более того, сгенерированные нами концепты для наборов данных CIFAR-10 и CIFAR-100 превосходят те, что были получены из ConceptNet и базовой модели, что демонстрирует способность LLM генерировать высококачественные концепты. Возможность автоматически генерировать и оценивать высококачественные концепты позволит исследователям работать с новыми наборами данных без дополнительных усилий.

  5. В данной статье исследуется эффективность применения технологии Retrieval-Augmented Generation (RAG) в сочетании с различными большими языковыми моделями (LLM) для поиска документов и получения информации в корпоративных информационных системах. Рассматриваются варианты использования LLM в корпоративных системах, архитектура RAG, характерные проблемы интеграции LLM в RAG-систему. Предлагается архитектура системы, включающая в себя векторный энкодер текстов и LLM. Энкодер используется для создания векторной базы данных, индексирующей библиотеку корпоративных документов. Запрос, передаваемый LLM, дополняется релевантным ему контекстом из библиотеки корпоративных документов, извлекаемым с использованием векторной базы данных и библиотеки FAISS. Большая языковая модель принимает запрос пользователя и формирует ответ на основе переданных в контексте запроса данных. Рассматриваются общая структура и алгоритм функционирования предлагаемого решения, реализующего архитектуру RAG. Обосновывается выбор LLM для исследования и проводится анализ результативности использования популярных LLM (ChatGPT, GigaChat, YandexGPT, Llama, Mistral, Qwen и др.) в качестве компонента для генерации ответов. На основе тестового набора вопросов методом экспертных оценок оцениваются точность, полнота, грамотность и лаконичность ответов, предоставляемых рассматриваемыми моделями. Анализируются характеристики отдельных моделей, полученные в результате исследования. Приводится информация о средней скорости отклика моделей. Отмечается существенное влияние объема доступной памяти графического адаптера на производительность локальных LLM. На основе интегрального показателя качества формируется общий рейтинг LLM. Полученные результаты подтверждают эффективность предложенной архитектуры RAG для поиска документов и получения информации в корпоративных информационных системах. Были определены возможные направления дальнейших исследований в этой области: дополнение контекста, передаваемого LLM, и переход к архитектуре на базе LLM-агентов. В заключении представлены рекомендации по выбору оптимальной конфигурации RAG и LLM для построения решений, обеспечивающих быстрый и точный доступ к информации в рамках корпоративных информационных систем.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.