Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'бифуркации':
Найдено статей: 43
  1. Ильин О.В.
    Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882

    Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.

  2. Брацун Д.А., Костарев К.В.
    Математическое моделирование фазовых переходов при коллективном взаимодействии агентов
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 1005-1028

    Коллективное поведение может выступать в роли механизма терморегуляции и играть ключевую роль при выживании группы организмов. Такие явления в среде животных, как правило, являются предметом изучения биологии, так как внезапные переходы к коллективному поведению трудно дифференцировать от психологической и социальной адаптации животных в группе. Тем не менее в работе указывается важный пример, когда стая животных демонстрирует фазовые переходы, сходные с явлением классической тепловой конвекции в жидкостях и газах. Этот вопрос может быть изучен также экспериментально в рамках синтетических систем, состоящих из самодвижущихся роботов, которые действуют по определенному заданному алгоритму. Обобщая оба эти случая, мы рассматриваем задачу о фазовых переходах в плотной группе взаимодействующих самодвижущихся агентов. Врамк ах микроскопической теории мы предлагаем математическую модель явления, в которой агенты представлены в виде тел, взаимодействующих друг с другом в соответствии с эффективным потенциалом особого вида, выражающим стремление агентов двигаться в направлении градиента общего теплового поля. Показано, что управляющим параметром задачи является численность группы. Дискретная модель с индивидуальной динамикой агентов воспроизводит большинство явлений, наблюдаемых как в естественных стаях животных, демонстрирующих коллективную терморегуляцию, так и в синтетических сложных системах, состоящих из роботов. Наблюдается фазовый переход 1-го рода со сменой агрегатного состояния в среде агентов, который заключается в самосборке первоначальной слабоструктурированной массы агентов в плотные квазикристаллические структуры. Кроме того, показано, что с увеличением численности скопления наблюдается фазовый переход 2-го рода в форме тепловой конвекции, который включает внезапное ожижение группы и переход к вихревому движению. Последнее обеспечивает более эффективное расходование энергии в случае синтетической системы взаимодействующих роботов и коллективное выживание всех особей в случае природных стай животных. С ростом численности группы происходят вторичные бифуркации, вихревая структура толпы агентов усложняется.

  3. Жданова О.Л., Неверова Г.П., Фрисман Е.Я.
    Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554

    Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.