Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'аналитическая модель':
Найдено статей: 126
  1. Брацун Д.А., Лоргов Е.С., Полуянов А.О.
    Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.

    Просмотров за год: 30.
  2. В результате всесторонних теоретических исследований в работе создана достаточно подробная физико-математическая модель возмущенной области, образованной в нижнем D-слое ионосферы под действием направленного потока радиоизлучения от наземного стенда мегагерцового диапазона частот. Модель основана на рассмотрении широкого круга кинетических процессов с учетом их неравновесности и в двухтемпературном приближении для описания трансформации энергии радиолуча, поглощаемой электронами. В работе взяты исходные данные по радиоизлучению, достигнутые к настоящему времени на наиболее мощных радионагревных стендах. Кратко описаны их основные характеристики и принципы действия, а также особенности высотного распределения поглощаемой электромагнитной энергии радиолуча. Показана определяющая роль D-слоя ионосферы в поглощении энергии радиолуча. На основе теоретического анализа получены аналитические выражения для вклада различных неупругих процессов в распределение поглощаемой энергии, позволяющая достаточно полно и корректно описывать вклад каждого из учитываемых процессов. В работе учитывается более 60 компонент, для описания изменения концентраций использовалось около 160 реакций. Все реакции разбиты на пять групп в соответствии с их физическим содержанием: ионизационно-химический блок, блок возбуждения метастабильных электронных состояний, кластерный блок, блок возбуждения колебательных состояний и блок примесей. Блоки взаимосвязаны между собой и могут рассчитываться как совместно, так и раздельно. Показано, что в дневных и ночных условиях поведение параметров возмущенной области существенно различно при одной и той же плотности потока радиоизлучения: в дневных условиях максимум электронной концентрации и температуры приходиться на высоте ~ 45–55 км; в ночных — на высоты ~ 80 км, при этом температура тяжелых частиц быстро возрастает, что приводит к возникновению газодинамического течения. Поэтому был разработан специальный численный алгоритм для совместного решения двух основных задач рассматриваемой проблемы: кинетической и газодинамической. На основе высотного и временного поведения концентраций и температур алгоритм позволяет определить ионизацию и свечение ионосферы в видимом и ИК-диапазоне спектра, что дает возможность оценить влияние возмущенной области на радиотехнические и оптико-электронные средства, используемые в космической технике.

    Просмотров за год: 17.
  3. Зенюк Д.А.
    Стохастическое моделирование химических реакций в субдиффузионной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104

    В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.

    Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.

    Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.

  4. Нгуен Б.Х., Ха Д.Т., Цибулин В.Г.
    Мультистабильность для системы трех конкурирующих видов
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1325-1342

    Проводится исследование вольтерровской модели, описывающей конкуренцию трех видов. Соответствующая система дифференциальных уравнений первого порядка с квадратичной правой частью после замены переменных сводится к системе с восемью параметрами. Два из них характеризуют скорости роста популяций, для первого вида этот параметр принят равным единице. Остальные шесть коэффициентов задают матрицу взаимодействий видов. Ранее при аналитическом исследовании так называемых симметричной модели [May, Leonard, 1975] и асимметричной модели [Chi, Wu, Hsu, 1998] с коэффициентами роста, равными единице, были установлены соотношения на коэффициенты взаимодействия, при которых система имеет однопараметрическое семейство предельных циклов. В данной работе проведено численно-аналитическое исследование полной системы на основе косимметричного подхода, позволившего определить соотношения на параметры, которым отвечают семейства равновесий. Получены различные варианты однопараметрических семейств и показано, что они могут состоять как из устойчивых, так и из неустойчивых равновесий. В случае матрицы взаимодействий с единичными коэффициентами найдены мультикосимметрия системы и двухпараметрическое семейство равновесий, существующее при любых коэффициентах роста. Для различных коэффициентов взаимодействия найдены значения параметров роста, при которых реализуются периодические режимы. Их принадлежность семейству предельных циклов подтверждена расчетом мультипликаторов. В широком диапазоне значений, нарушающих соотношения, при которых обеспечивается существование циклов, получается типичное при разрушении косимметрии медленное колебательное установление. Приведены примеры, когда фиксированному значению одного параметра роста отвечают два значения другого параметра, так что существуют разные семейства периодических режимов. Таким образом, установлена вариативность сценариев развития трехвидовой системы.

  5. Герасимов А.Н., Шпитонков М.И.
    Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711

    Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.

    Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.

    В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.

    Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.

    Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.

    Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.

    Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.

    Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.

  6. Кондратьев М.А.
    Методы прогнозирования и модели распространения заболеваний
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882

    Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.

    Просмотров за год: 71. Цитирований: 19 (РИНЦ).
  7. Мацак И.С., Кудрявцев Е.М., Тугаенко В.Ю.
    Моделирование погрешностей измерений диаметра широкоапертурного лазерного пучка c плоским профилем
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 113-124

    Работа посвящена моделированию инструментальных погрешностей измерения диаметра лазерного пучка при использовании метода на основе ламбертовски рассеивающего на просвет экрана. В качестве модели пучка использовалось суперлоренцево распределение. Для определения влияния на погрешность измерения каждого из параметров проводились вычислительные эксперименты, результаты которых аппроксимировались аналитическими функциями. Были получены зависимости погрешностей от относительного размера пучка, пространственной неравномерности пропускания экрана, дисторсии объектива, физического виньетирования, наклона пучка, пространственного разрешения матрицы, разрядности АЦП-камеры. Показано, что погрешность может быть менее 1 %.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).
  8. Галочкина Т.В., Вольперт В.А.
    Математическое моделирование распространения тромбина в процессе свертывания крови
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486

    В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.

    Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.

    Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  9. Лобачева Л.В., Борисова Е.В.
    Моделирование процессов миграции загрязнений от свалки твердых бытовых отходов
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 369-385

    В статье представлены результаты исследования процессов миграции загрязнений от свалки твердых бытовых отходов (ТБО), расположенной в водоохранной зоне озера Селигер. Для изучения особенностей распространения загрязняющих веществ и определения миграционных параметров проведен комплекс полевых и лабораторных исследований в районе расположения свалки. Построена математическая модель, описывающая физико-химические процессы миграции веществ в почвогрунтовой толще. Процесс движения загрязняющих веществ обуславливается разнообразными факторами, оказывающими существенное влияние на миграцию ингредиентов ТБО, основными из которых являются: конвективный перенос, диффузия и сорбционные процессы, которые учтены в математической постановке задачи. Модифицированная математическая модель отличается от известных аналогов учетом ряда параметров, отражающих снижение концентрации ионов аммонийного и нитратного азота в грунтовых водах (транспирация корнями растений, разбавление инфильтрационными водами и т. д.). Представлено аналитическое решение по оценке распространения загрязнений от свалки ТБО. На основе математической модели построен комплекс имитационных моделей, который позволяет получить численное решение частных задач: вертикальной и горизонтальной миграции веществ в подземном потоке. В ходе выполнения численных экспериментов, получения аналитических решений, а также на основе данных полевых и лабораторных исследований изучена динамика распределения загрязнений в толще объекта исследования до озера. Сделан долгосрочный прогноз распространения загрязнений от свалки. В результате компьютерных и модельных экспериментов установлено, что при миграции загрязнений от свалки можно выделить ряд зон взаимодействия чистых грунтовых вод с загрязненными подземными водами, каждая из которой характеризуется различным содержанием загрязняющих веществ. Данные вычислительных экспериментов и аналитических расчетов согласуются с результатами полевых и лабораторных исследований объекта, что дает основание рекомендовать предлагаемые модели для прогнозирования миграции загрязнений от свалки ТБО. Анализ результатов моделирования миграции загрязнений позволяет обосновать численные оценки увеличения концентрации ионов $NH_4^+$ и $NO_3^-$ со временем функционирования свалки. Выявлено, что уже через 100 лет после начала существования свалки токсичные компоненты фильтрата заполнят все поровое пространство от свалки до озера, что приведет к существенному ухудшению экосистемы озера Селигер.

  10. Лысыч М.Н.
    Компьютерное моделирование процесса обработки почвы рабочими органами почвообрабатывающих машин
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 607-627

    В работе анализируются методы исследования процесса взаимодействия почвенных сред с рабочими органами почвообрабатывающих машин. Подробно рассмотрены математические методы численного моделирования, позволяющие преодолеть недостатки аналитических и эмпирических подходов. Приводятся классификация и обзор возможностей континуальных (FEM — метод конечных элементов, CFD — вычислительная гидродинамика) и дискретных (DEM — метод дискретных элементов, SPH — гидродинамика сглаженных частиц) численных методов. На основе метода дискретных элементов разработана математическая модель, представляющая почву, в виде множества взаимодействующих сферических элементов малых размеров. Рабочие поверхности почвообрабатывающего орудия в рамках конечноэлементного приближения представлены в виде совокупности элементарных треугольников. В модели рассчитывается движение элементов почвы под действием сил контакта элементов почвы друг с другом и с рабочими поверхностями орудия (упругие силы, силы сухого и вязкого трения). Это дает возможность оценивать влияние геометрических параметров рабочих органов, технологических параметров процесса и параметров почвы на геометрические показатели смещения почвы, показатели самоустановки орудия, силовые нагрузки, показатели качества рыхления и пространственное распределение показателей. Всего исследуются 22 показателя (или распределение показателя в пространстве). Возможности математической модели демонстрируются на примере комплексного исследования процесса обработки почвы дисковой культиваторной батареей. В компьютерном эксперименте использованы виртуальный почвенный канал размером 5×1.4 м и 3D-модель дисковой культиваторной батареи. Радиус почвенных частиц принимался равным 18 мм, скорость рабочего органа — 1 м/с, общее время моделирования — 5 с. Глубина обработки составляла 10 см при углах атаки 10, 15, 20, 25 и 30°. Проверка достоверности результатов моделирования производилась на лабораторной установке, для объемного динамометрирования, путем исследования натурного образца, выполненного в полном соответствии с исследованной 3D-моделью. Контроль осуществлялся по трем составляющим вектора тягового сопротивления: $F_x$, $F_y$ и $F_z$. Сравнение данных, полученных экспериментальным путем, с данными моделирования показало, что расхождение составляет не более 22.2 %, при этом во всех случаях максимальные значения наблюдались при углах атаки 30°. Хорошая согласуемость данных по трем ключевым силовым параметрам подтверждает достоверность всего комплекса исследованных показателей.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.