Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'анализ текста':
Найдено статей: 21
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 5-8
  4. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
  5. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  6. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  7. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 999-1002
  8. Кочергин А.В., Холматова З.Ш.
    Извлечение персонажей и событий из повествований
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1593-1600

    Извлечение событий и персонажей из повествований является фундаментальной задачей при анализе и обработке текста на естественном языке. Методы извлечения событий применяются в самых разных областях — от обобщения различных документов до анализа медицинских записей. Мы определяли события на основе структуры под названием «четыре W» (кто, что, когда, где), чтобы охватить все основные компоненты событий, такие как действующие лица, действия, время и места. В этой статье мы рассмотрели два основных метода извлечения событий: статистический анализ синтаксических деревьев и семантическая маркировка ролей. Хотя эти методы были изучены разными исследователями по отдельности, мы напрямую сравнили эффективность двух подходов на собранном нами наборе данных, который мы разметили.

    Наш анализ показал, что статистический анализ синтаксических деревьев превосходит семантическую маркировку ролей при выделении событий и символов, особенно при определении конкретных деталей. Тем не менее, семантическая маркировка ролей продемонстрировала хорошую эффективность при правильной идентификации действующих лиц. Мы оценили эффективность обоих подходов, сравнив различные показатели, такие как точность, отзывчивость и F1-баллы, продемонстрировав, таким образом, их соответствующие преимущества и ограничения.

    Более того, в рамках нашей работы мы предложили различные варианты применения методов извлечения событий, которые мы планируем изучить в дальнейшем. Области, в которых мы хотим применить эти методы, включают анализ кода и установление авторства исходного кода. Мы рассматриваем возможность использования методов извлечения событий для определения ключевых элементов кода в виде назначений переменных и вызовов функций, что в дальнейшем может помочь ученым проанализировать поведение программ и определить участников проекта. Наша работа дает новое понимание эффективности статистического анализа и методов семантической маркировки ролей, предлагая исследователям новые направления для применения этих методов.

  9. В данной статье исследуется эффективность применения технологии Retrieval-Augmented Generation (RAG) в сочетании с различными большими языковыми моделями (LLM) для поиска документов и получения информации в корпоративных информационных системах. Рассматриваются варианты использования LLM в корпоративных системах, архитектура RAG, характерные проблемы интеграции LLM в RAG-систему. Предлагается архитектура системы, включающая в себя векторный энкодер текстов и LLM. Энкодер используется для создания векторной базы данных, индексирующей библиотеку корпоративных документов. Запрос, передаваемый LLM, дополняется релевантным ему контекстом из библиотеки корпоративных документов, извлекаемым с использованием векторной базы данных и библиотеки FAISS. Большая языковая модель принимает запрос пользователя и формирует ответ на основе переданных в контексте запроса данных. Рассматриваются общая структура и алгоритм функционирования предлагаемого решения, реализующего архитектуру RAG. Обосновывается выбор LLM для исследования и проводится анализ результативности использования популярных LLM (ChatGPT, GigaChat, YandexGPT, Llama, Mistral, Qwen и др.) в качестве компонента для генерации ответов. На основе тестового набора вопросов методом экспертных оценок оцениваются точность, полнота, грамотность и лаконичность ответов, предоставляемых рассматриваемыми моделями. Анализируются характеристики отдельных моделей, полученные в результате исследования. Приводится информация о средней скорости отклика моделей. Отмечается существенное влияние объема доступной памяти графического адаптера на производительность локальных LLM. На основе интегрального показателя качества формируется общий рейтинг LLM. Полученные результаты подтверждают эффективность предложенной архитектуры RAG для поиска документов и получения информации в корпоративных информационных системах. Были определены возможные направления дальнейших исследований в этой области: дополнение контекста, передаваемого LLM, и переход к архитектуре на базе LLM-агентов. В заключении представлены рекомендации по выбору оптимальной конфигурации RAG и LLM для построения решений, обеспечивающих быстрый и точный доступ к информации в рамках корпоративных информационных систем.

  10. Чувилин К.В.
    Эффективный алгоритм сравнения документов в формате ${\mathrm{\LaTeX}}$
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 329-345

    Рассматривается задача построения различий, возникающих при редактировании документов в формате ${\mathrm{\LaTeX}}$. Каждый документ представляется в виде синтаксического дерева, узлы которого называются токенами. Строится минимально возможное текстовое представление документа, не меняющее синтаксическое дерево. Весь текст разбивается на фрагменты, границы которых соответствуют токенам. С помощью алгоритма Хиршберга строится отображение последовательности текстовых фрагментов изначального документа в аналогичную последовательность отредактированного документа, соответствующее минимальному редактирующему расстоянию. Строится отображение символов текстов, соответствующее отображению последовательностей текстовых фрагментов. В синтаксических деревьях выделяются токены такие, что символы соответствующих фрагментов текста при отображении либо все не меняются, либо все удаляются, либо все добавляются. Для деревьев, образованных остальными токенами, строится отображение с помощью алгоритма Zhang–Shasha.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.