Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'анализ геометрических препятствий':
Найдено статей: 2
  1. Божко А.Н., Ливанцов В.Э.
    Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840

    Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.

  2. Москалев П.В., Стебулянин М.М., Мягков А.С.
    Влияние пространственного разрешения на оптимальность пути мобильного робота в двумерных решеточных моделях
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1131-1148

    В данной работе исследуется влияние пространственного разрешения дискретизированного (решеточного) представления рабочего пространства на эффективность и корректность поиска оптимального пути в сложных условиях. Рассматриваются сценарии, характеризующиеся возможным наличием узких проходов, неоднородным распределением препятствий и зонами повышенных требований к безопасности в непосредственной окрестности от препятствий. Несмотря на широкое применение решеточных представлений рабочего пространства в робототехнике благодаря их совместимости с сенсорными данными и поддержке классических алгоритмов планирования траекторий, разрешение этих решеток оказывает существенное влияние как на достижимость цели, так и на показатели оптимального пути. Предлагается алгоритм, сочетающий анализ связности пространства, оптимизацию траектории и геометрическое уточнение безопасности. На первом этапе с помощью обобщения алгоритма Лиса (Leath) оценивается достижимость целевой точки путем выявления связной компоненты, содержащей стартовую позицию. При подтверждении достижимости целевой точки на втором этапе алгоритм A* применяется к узлам данной компоненты для построения пути, минимизирующего одновременно как длину пути, так и риск столкновения. На третьем этапе для узлов, расположенных в зонах безопасности, осуществляется уточненная оценка расстояния до препятствий с помощью комбинации алгоритмов Гилберта – Джонсона – Кирти (GJK) и расширяющегося многогранника (EPA). Экспериментальный анализ позволил выявить нелинейную зависимость вероятности существования и эффективности оптимального пути от параметров решетки. В частности, снижение пространственного разрешения решетки повышает вероятность потери связности и недостижимости цели, а увеличение ее пространственного разрешения влечет рост вычислительной сложности без пропорционального улучшения характеристик оптимального пути.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.