Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.
Ключевые слова: игра Гермейера, игра Штакельберга, иерархия, имитационное моделирование, инновационное развитие, побуждение, принуждение.Просмотров за год: 9. Цитирований: 6 (РИНЦ). -
Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.
Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.
В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.
-
Математическая модель биометрической системы распознавания по радужной оболочке глаза
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.
-
Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.
Ключевые слова: борщевик Сосновского, инвазивные растения, Google Earth Engine, машинное обучение, случайный лес. -
Калибровка эластостатической модели манипулятора с использованием планирования эксперимента на основе методов искусственного интеллекта
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1535-1553В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.
Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.
-
Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.
-
Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.
Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.
Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.
Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.
В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.
-
Идентификация математической модели и исследование различных режимов метаногенеза в мезофильной среде
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 131-141Просмотров за год: 10. Цитирований: 10 (РИНЦ).Предложена математическая модель процесса получения биогаза из отходов животноводства. Разработан алгоритм идентификации параметров модели. Проведена оценка точности идентификации модели. Приведены результаты моделирования для периодического и непрерывного режимов подачи субстрата. Найдена оптимальная скорость подачи субстрата для непрерывного режима.
-
Разработка интеллектуальной системы определения объемно-весовых характеристик груза
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 437-450Промышленная обработка изображений или «машинное зрение» в настоящее время является ключевой технологией во многих отраслях, поскольку эта технология может использоваться для оптимизации различных процессов. Целью настоящей работы является создание программно-аппаратного комплекса измерения габаритно-весовых характеристик груза на базе интеллектуальной системы, основанной на нейросетевых способах идентификации, позволяющих преодолеть технологические ограничения аналогичных комплексов, реализованных на ультразвуковых и инфракрасных измерительных датчиках. Разрабатываемый комплекс будет производить измерения грузов без ограничения на объемные и весовые характеристики груза, который необходимо тарифицировать и сортировать в рамках работы складских комплексов. В состав системы будет входить интеллектуальная компьютерная программа, определяющая объемно-весовые характеристики груза с использованием технологии машинного зрения и экспериментальный образец стенда измерения объёма и веса груза.
Проведен анализ исследований, посвященных решению аналогичных задач. Отмечено, что недостатком изученных способов являются очень высокие требования к расположению камеры, а также необходимость ручной работы при вычислении размеров, автоматизировать которую не представляется возможным без существенных доработок. В процессе работы исследованы различные способы распознавания объектов на изображениях с целью проведения предметной фильтрации по наличию груза и измерения его габаритных размеров. Получены удовлетворительные результаты при применении камер, сочетающих в себе как оптический способ захвата изображений, так и инфракрасные датчики. В результате работы разработана компьютерная программа, позволяющая захватывать непрерывный поток с видеокамер Intel RealSense с последующим извлечением из обозначенной области трехмерный объект и вычислять габаритные размеры объекта. На данном этапе выполнено: проведен анализ методик компьютерного зрения; разработан алгоритм для реализации задачи автоматического измерения грузов с использованием специальных камер; разработано программное обеспечение, позволяющее получать габаритные размеры объектов в автоматическом режиме.
Данная разработка по завершении работы может применяться как готовое решение для транспортных компаний, логистических центров, складов крупных производственных и торговых предприятий.
-
Статистический анализ биграмм специализированных текстов
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 243-254Метод спектрального анализа стохастической матрицы применяется для построения индикатора, позволяющего определять тематику научных текстов без использования ключевых слов. Эта матрица представляет собой матрицу условных вероятностей биграмм, построенную по статистике используемых в тексте символов алфавита без учета пробелов, цифр и знаков препинания. Научные тексты классифицируются по взаимному расположению инвариантных подпространств матрицы условных вероятностей пар буквосочетаний. Индикатор разделения — величина косинуса угла между правым и левым собственными векторами, отвечающими максимальному и минимальному собственным значениям. Вычислительный алгоритм использует специальное представление параметра дихотомии, в качестве которого выступает интеграл от нормы квадрата резольвенты стохастической матрицы биграмм по окружности заданного радиуса в комплексной плоскости. Стремление интеграла в бесконечность свидетельствует о приближении контура интегрирования к собственному значению матрицы. В работе приведены типовые распределения индикатора идентификации специальностей. Для статистического анализа были проанализированы диссертации по основным 19 специальностям ВАК без учета классификации внутри специальности, по 20 текстов на специальность. Выяснилось, что эмпирические распределения косинуса угла для физико-математических и гуманитарных специальностей не имеют общего носителя, поэтому могут быть формально разделены по значению этого индикатора без ошибки. Хотя корпус текстов был не особенно большой, тем не менее при произвольном отборе диссертаций ошибка идентификации на уровне 2 % представляется очень хорошим результатом по сравнению с методами, основанными на семантическом анализе. Также выяснилось, что можно составить паттерн текста по каждой из специальностей в виде эталонной матрицы биграмм, по близости к которой в норме суммируемых функций можно безошибочно идентифицировать тематику написанного научного произведения, не используя ключевые слова. Предложенный метод можно использовать и в качестве сравнительного индикатора большей или меньшей строгости научного текста или как индикатор соответствия текста определенному научному уровню.
Ключевые слова: стохастическая матрица, спектральный портрет, статистический индикатор, научный текст.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"