Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'алгоритм':
Найдено статей: 337
  1. Уифтер Т.Т., Разумный Ю.Н., Орловский А.В., Лобанов В.К.
    Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1357-1370

    Изучение спектрального отклика растений на основе данных, собранных с помощью дистанционного зондирования, имеет большой потенциал для решения реальных проблем в различных областях исследований. В этом исследовании мы использовали спектральные свойства для идентификации инвазивного растения — борщевика Сосновского — по спутниковым снимкам. Борщевик Сосновского — инвазивное растение, которое наносит много вреда людям, животным и экосистеме в целом. Мы использовали выборочные данные о геолокации мест произрастания борщевика в Московской области, собранные с 2018 по 2020 год, и спутниковые снимки Sentinel-2 для спектрального анализа с целью его обнаружения на снимках. Мы развернули модель машинного обучения Random Forest (RF) на облачной платформе Google Earth Engine (GEE). Алгоритм обучается на наборе данных, состоящем из 12 каналов спутниковых снимков Sentinel-2, цифровой модели рельефа и некоторых спектральных индексов, которые используются в алгоритме в качестве параметров. Используемый подход заключается в выявлении биофизических параметров борщевика Сосновского по его коэффициентам отражения с уточнением радиочастотной модели непосредственно по набору данных. Наши результаты наглядно демонстрируют насколько сочетание методов дистанционного зондирования и машинного обучения может помочь в обнаружении борщевика и контроле его инвазивного распространения. Наш подход обеспечивает высокую точность обнаружения очагов произрастания борщевика Сосновского, составляющую 96,93 %.

  2. Скачков Д.А., Гладышев С.И., Райгородский А.М.
    Экспериментальное сравнение алгоритмов поиска вектора PageRank
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 369-379

    Задача поиска PageRank вектора представляет большой научный и практический интерес ввиду своей применимости к работе современных поисковых систем. Несмотря на то, что данная задача сводится к поиску собственного вектора стохастической матрицы $P$, потребность в новых алгоритмах для ее решения обусловлена большими размерами входных данных. Для достижения не более чем линейного времени работы применяются различные рандомизированные методы, возвращающие ожидаемый ответ лишь с некоторой достаточно близкой к единице вероятностью. Нами рассматриваются два таких способа, сводящие задачу поиска вектора PageRank к задаче поиска равновесия в антагонистической матричной игре, которая затем решается с помощью алгоритма Григориадиса – Хачияна. При этом данная реализация эффективно работает в предположении о разреженности матрицы, подаваемой на вход. Насколько нам известно, до сих пор не было ни одной успешной реализации ни алгоритма Григориадиса – Хачияна, ни его применения к задаче поиска вектора PageRank. Данная статья ставит перед собой задачу восполнить этот пробел. В работе приводится описание двух версий алгоритма с псевдокодом и некоторые детали их реализации. Кроме того, в работе рассматривается другой вероятностный метод поиска вектора PageRank, а именно Markov chain Monte Carlo (MCMC), с целью сравнения результатов работы указанных алгоритмов на матрицах с различными значениями спектральной щели. Последнее представляет особый интерес, поскольку значение спектральной щели сильно влияет на скорость сходимости MCMC, и не оказывает никакого влияния на два других подхода. Сравнение проводилось на сгенерированных графах двух видов: цепочках и $d$-мерных кубах. Проведенные эксперименты, как и предсказывает теория, демонстрируют эффективность алгоритма Григориадиса – Хачияна по сравнению с MCMC для разреженных графов с маленьким значением спектральной щели. Весь код находится в открытом доступе, так чтобы все желающие могли воспроизвести полученные результаты самостоятельно, или же использовать данную реализацию в своих нуждах. Работа имеет чисто практическую направленность, никаких теоретических результатов авторами получено не было.

  3. В данной работе показаны преимущества использования алгоритмов искусственного интеллекта для планирования эксперимента, позволяющих повысить точность идентификации параметров для эластостатической модели робота. Планирование эксперимента для робота заключается в подборе оптимальных пар «конфигурация – внешняя сила» для использования в алгоритмах идентификации, включающих в себя несколько основных этапов. На первом этапе создается эластостатическая модель робота, учитывающая все возможные механические податливости. Вторым этапом выбирается целевая функция, которая может быть представлена как классическими критериями оптимальности, так и критериями, напрямую следующими из желаемого применения робота. Третьим этапом производится поиск оптимальных конфигураций методами численной оптимизации. Четвертым этапом производится замер положения рабочего органа робота в полученных конфигурациях под воздействием внешней силы. На последнем, пятом, этапе выполняется идентификация эластостатичесих параметров манипулятора на основе замеренных данных.

    Целевая функция для поиска оптимальных конфигураций для калибровки индустриального робота является ограниченной в силу механических ограничений как со стороны возможных углов вращения шарниров робота, так и со стороны возможных прикладываемых сил. Решение данной многомерной и ограниченной задачи является непростым, поэтому предлагается использовать подходы на базе искусственного интеллекта. Для нахождения минимума целевой функции были использованы следующие методы, также иногда называемые эвристическими: генетические алгоритмы, оптимизация на основе роя частиц, алгоритм имитации отжига т. д. Полученные результаты были проанализированы с точки зрения времени, необходимого для получения конфигураций, оптимального значения, а также итоговой точности после применения калибровки. Сравнение показало преимущество рассматриваемых техник оптимизации на основе искусственного интеллекта над классическими методами поиска оптимального значения. Результаты данной работы позволяют уменьшить время, затрачиваемое на калибровку, и увеличить точность позиционирования рабочего органа робота после калибровки для контактных операций с высокими нагрузками, например таких, как механическая обработка и инкрементальная формовка.

  4. Перцев Н.В., Логинов К.К.
    Моделирование начального периода развития инфекции ВИЧ-1 в лимфоузле на основе дифференциальных уравнений с запаздыванием
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1181-1203

    Представлена математическая модель, описывающая динамику инфекции ВИЧ-1 в отдельно взятом лимфоузле в начальный период развития инфекции. В рамках модели инфицирование индивидуума задается неотрицательной финитной функцией, описывающей скорость поступления первоначальных вирусных частиц в лимфоузел. Уравнения модели построены с учетом следующих факторов: 1) взаимодействие вирусных частиц с наивными Т-лимфоцитами CD4+, находящимися в различных фазах клеточного цикла; 2) контактное взаимодействие между размножающимися наивными Т-лимфоцитами CD4+ и инфицированными Т-лимфоцитами CD4+, производящими вирусные частицы. Спецификой контактных межклеточных взаимодействий является образование комплексов, состоящих из пар указанных клеток. Длительности существования комплексов задаются функциями распределения на конечных промежутках времени. Модель записана в форме высокоразмерной системы нелинейных дифференциальных уравнений с запаздыванием, включая два уравнения с распределенным запаздыванием, и дополнена неотрицательными начальными данными. При отсутствии инфекции ВИЧ-1 модель сводится к четырем дифференциальным уравнениям с запаздыванием, описывающим численность наивных Т-лимфоцитов CD4+ в различных фазах клеточного цикла. Показана глобальная разрешимость модели (существование и единственность решения на полуоси) и установлена неотрицательность компонент решения. Для проведения вычислительных экспериментов с моделью разработан алгоритм численного решения используемой системы дифференциальных уравнений на основе полунеявной схемы Эйлера для случая равномерного распределения длительностей существования комплексов. Представлены результаты вычислительных экспериментов, направленных на приближение численного решения модели к описанию кинетики развития инфекции ВИЧ-1 в ее острой фазе, включая фазу эклипса. В качестве наблюдаемой использована переменная, описывающая количество вирусных частиц на один миллилитр крови на 10–12-е сутки после начала острой инфекции. Численно исследована динамика наблюдаемой переменной в зависимости от вариации параметров модели, отражающих закономерности формирования комплексов и образования клеток, производящих вирусные частицы. Показана возможность затухания инфекции ВИЧ-1 в лимфоузле при определенных значениях некоторых из параметров модели.

  5. Жабицкая Е.И., Жабицкий М.В., Земляная Е.В., Лукьянов К.В.
    Расчет параметров микроскопического оптического потенциала упругого рассеяния π-мезонов на ядрах с применением алгоритма асинхронной дифференциальной эволюции
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 585-595

    Новый асинхронный алгоритм дифференциальной эволюции использован для определения параметров микроскопического оптического потенциала упругого рассеяния пионов на ядрах 28Si, 58Ni и 208Pb при энергиях 130, 162 и 180 МэВ.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  6. Кольцов Ю.В., Бобошко Е.В.
    Сравнительный анализ методов оптимизации для решения задачи интервальной оценки потерь электроэнергии
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 231-239

    Данная работа посвящена сравнительному анализу оптимизационных методов и алгоритмов для проведения интервальной оценки технических потерь электроэнергии в распределительных сетях напряжением 6–20 кВ. Задача интервальной оценки потерь сформулирована в виде задачи многомерной условной минимизации/максимизации с неявной целевой функцией. Рассмотрен ряд методов численной оптимизации первого и нулевого порядков, с целью определения наиболее подходящего для решения рассмотренной проблемы. Таким является алгоритм BOBYQA, в котором целевая функция заменяется ее квадратичной аппроксимацией в пределах доверительной области.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  7. Усанов М.С., Кульберг Н.С., Яковлева Т.В., Морозов С.П.
    Определение дозы излучения компьютерной томографии по анализу уровня шума
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 525-533

    В статье рассматривается процесс создания эффективного алгоритма для определения количества излученных квантов с рентгеновской трубки в исследованиях компьютерной томографии. Анализ отечественной и зарубежной литературы показал, что большинство работ в области радиометрии и радиографии принимают во внимание табличные значения показателей поглощения рентгеновского излучения, а индивидуальные показатели дозы не учитывают вовсе, т. к. во многих исследованиях отсутствует радиометрический отчет (Dose Report) и для облегчения расчетов статистики применяется средний показатель. В связи с этим было принято решение разработать средства выявления данных об ионизирующей нагрузке путем анализа шума компьютерной томографии (КТ). В качестве основы алгоритма принята математическая модель распределения шума собственной разработки на основе распределения Пуассона и Гаусса от логарифмической величины. Результирующая математическая модель проверялась на данных КТ калибровочного фантома, состоящего из трех пластиковых цилиндров, заполненных водой, коэффициент поглощения рентгеновского излучения которых известен из табличных значений. Данные были получены с нескольких КТ приборов различных производителей (Siemens, Toshiba, GE, Phillips). Разработанный алгоритм позволил рассчитать количество излученных квантов рентгеновского излучения за единицу времени. Эти данные, с учетом уровня шума и радиусов цилиндров, были преобразованы в величины поглощения рентгеновского излучения, после чего проводилось сравнение с табличными значениями. В результате работы алгоритма с данными КТ различных конфигураций были получены экспериментальные данные, согласующиеся с теоретической частью и математической моделью. Результаты показали хорошую точность алгоритма и математического аппарата, что может говорить о достоверности полученных данных. Данная математическая модель уже применяется в программе шумоподавления КТ собственной разработки, где она участвует в качестве средства создания динамического порога шумоподавления. В данный момент алгоритм проходит процедуру доработки для работы с реальными данными компьютерной томографии пациентов.

    Просмотров за год: 23. Цитирований: 1 (РИНЦ).
  8. Чернов И.А.
    Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183

    Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.

  9. Киселев М.В.
    Исследование двухнейронных ячеек памяти в импульсных нейронных сетях
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 401-416

    В данной работе изучаются механизмы рабочей памяти в импульсных нейронных сетях, состоящих из нейронов – интеграторов с утечкой и адаптивным порогом при включенной синаптической пластичности. Исследовались относительно небольшие сети, включающие тысячи нейронов. Рабочая память трактовалась как способность нейронной сети удерживать в своем состоянии информацию о предъявленных ей в недавнем прошлом стимулах, так что по этой информации можно было бы определить, какой стимул был предъявлен. Под состоянием сети в данном исследовании понимаются только характеристики активности сети, не включая внутреннего состояния ее нейронов. Для выявления нейронных структур, которые могли бы выполнять функцию носителей рабочей памяти, была проведена оптимизация параметров и структуры импульсной нейронной сети с помощью генетического алгоритма. Были обнаружены два типа таких нейронных структур: пары нейронов, соединенных связями с большими весами, и длинные древовидные нейронные цепи. Было показано, что качественная рабочая память может быть реализована только с помощью сильно связанных нейронных пар. В работе исследованы свойства таких ячеек памяти и образуемых ими структур. Показано, что характеристики изучаемых двухнейронных ячеек памяти легко задаются параметрами входящих в них нейронов и межнейронных связей. Выявлен интересный эффект повышения селективности пары нейронов за счет несовпадения наборов их афферентных связей и взаимной активации. Продемонстрировано также, что ансамбли таких структур могут быть использованы для реализации обучения без учителя распознаванию паттернов во входном сигнале.

  10. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.