Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Вейвлет-преобразование с вейвлетом Морле: методы расчета, основанные на решении диффузионных дифференциальных уравнений
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 5-12Представлены два алгоритма проведения непрерывного вейвлет-преобразования с вейвлетом Морле. Первый представляет собой решение системы дифференциальных уравнений в частных производных, в которой преобразуемый сигнал играет роль начальных условий. Второй позволяет исследовать влияние базисной частоты путем диффузионного сглаживания начальных данных, модулированных гармоническими функциями. Эти подходы проиллюстрированы анализом хаотических колебаний связанных систем Ресслера.
Wavelet transform with the Morlet wavelet: Calculation methods based on a solution of diffusion equations
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 5-12Просмотров за год: 5. Цитирований: 3 (РИНЦ).Two algorithms of evaluation of the continuous wavelet transform with the Morlet wavelet are presented. The first one is the solution of PDE with transformed signal, which plays a role of the initial value. The second allows to explore the influence of central frequency variation via the diffusion smoothing of the data modulated by the harmonic functions. These approaches are illustrated by the analysis of the chaotic oscillations of the coupled Roessler systems.
-
Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.
Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости.
Mathematical modeling of bending of a circular plate using $S$-splines
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 977-988Просмотров за год: 4.This article is dedicated to the use of higher degree $S$-splines for solving equations of the elasticity theory. As an example we consider the solution to the equation of bending of a plate on a circle. $S$-spline is a piecewise-polynomial function. Its coefficients are defined by two conditions. The first part of the coefficients are defined by the smoothness of the spline. The rest are determined using the least-squares method. We consider class $C^4$ 7th degree $S$-splines.
-
О проектировании нуля на линейное многообразие, многогранник и вершину многогранника. Ньютоновские методы минимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 563-591Рассматривается подход к построению методов решения задачи квадратичного программирования для расчета направления спуска в ньютоновских методах минимизации гладкой функции на множестве, заданном набором линейных равенств. Подход состоит из двух этапов.
На первом этапе задача квадратичного программирования преобразуется численно устойчивым прямым мультипликативным алгоритмом в эквивалентную задачу о проектировании начала координат на линейное многообразие, что определяет новую математическую формулировку двойственной квадратичной задачи. Для этого предложен численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в расчете модифицированных факторов Холесского для построения существенно положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов. Причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.
На втором этапе необходимые и достаточные условия оптимальности в форме Куна–Таккера определяют расчет направления спуска — решение двойственной квадратичной задачи сводится к решению системы линейных уравнений с симметричной положительно определенной матрицей коэффициентов для расчета множителей Лагранжа и к подстановке решения в формулу для расчета направления спуска.
Доказано, что предложенный подход к расчету направления спуска численно устойчивыми прямыми мультипликативными методами на одной итерации требует по кубическому закону меньше вычислений, чем одна итерация по сравнению с известным двойственным методом Гилла и Мюррея. Кроме того, предложенный метод допускает организацию вычислительного процесса с любой начальной точки, которую пользователь выберет в качестве исходного приближения решения.
Представлены варианты постановки задачи о проектировании начала координат на линейное многообразие, выпуклый многогранник и вершину выпуклого многогранника. Также описаны взаимосвязь и реализация методов решения этих задач.
Ключевые слова: ньютоновские методы, квадратичное программирование, двойственная квадратичная задача, разреженные матрицы, факторизация Холесского, прямой мультипликативный алгоритм, численная устойчивость, задача о проектировании нуля, линейное многообразие, вершина многогранника.
Designing a zero on a linear manifold, a polyhedron, and a vertex of a polyhedron. Newton methods of minimization
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 563-591Просмотров за год: 6.We consider the approaches to the construction of methods for solving four-dimensional programming problems for calculating directions for multiple minimizations of smooth functions on a set of a given set of linear equalities. The approach consists of two stages.
At the first stage, the problem of quadratic programming is transformed by a numerically stable direct multiplicative algorithm into an equivalent problem of designing the origin of coordinates on a linear manifold, which defines a new mathematical formulation of the dual quadratic problem. For this, a numerically stable direct multiplicative method for solving systems of linear equations is proposed, taking into account the sparsity of matrices presented in packaged form. The advantage of this approach is to calculate the modified Cholesky factors to construct a substantially positive definite matrix of the system of equations and its solution in the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made in the position of the next processed row of the matrix, which allows the use of static data storage formats.
At the second stage, the necessary and sufficient optimality conditions in the form of Kuhn–Tucker determine the calculation of the direction of descent — the solution of the dual quadratic problem is reduced to solving a system of linear equations with symmetric positive definite matrix for calculating of Lagrange's coefficients multipliers and to substituting the solution into the formula for calculating the direction of descent.
It is proved that the proposed approach to the calculation of the direction of descent by numerically stable direct multiplicative methods at one iteration requires a cubic law less computation than one iteration compared to the well-known dual method of Gill and Murray. Besides, the proposed method allows the organization of the computational process from any starting point that the user chooses as the initial approximation of the solution.
Variants of the problem of designing the origin of coordinates on a linear manifold, a convex polyhedron and a vertex of a convex polyhedron are presented. Also the relationship and implementation of methods for solving these problems are described.
-
О построении и свойствах WENO-схем пятого, седьмого, девятого, одиннадцатого и тринадцатого порядков. Часть 1. Построение и устойчивость
Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 721-753В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.
Ключевые слова: WENO-схемы, нелинейные схемы, устойчивость численных схем, системы уравнений гиперболического типа, уравнение Хопфа.
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Просмотров за год: 9. Цитирований: 1 (РИНЦ).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 737-753В данной работе рассматривается проксимальный быстрый градиентный метод Монтейро – Свайтера (2013 г.), в котором используется один шаг метода Ньютона для приближенного решения вспомогательной задачи на каждой итерации проксимального метода. Метод Монтейро – Свайтера является оптимальным (по числу вычислений градиента и гессиана оптимизируемой функции) для достаточно гладких задач выпуклой оптимизации в классе методов, использующих только градиент и гессиан оптимизируемой функции. За счет замены шага метода Ньютона на шаг недавно предложенного тензорного метода Ю. Е. Нестерова (2018 г.), а также за счет специального обобщения условия подбора шага в проксимальном внешнем быстром градиентном методе удалось предложить оптимальный тензорный метод, использующий старшие производные. В частности, такой тензорный метод, использующий производные до третьего порядка включительно, оказался достаточно практичным ввиду сложности итерации, сопоставимой со сложностью итерации метода Ньютона. Таким образом, получено конструктивное решение задачи, поставленной Ю. Е. Нестеровым в 2018 г., об устранении зазора в точных нижних и завышенных верхних оценках скорости сходимости для имеющихся на данный момент тензорных методов порядка $p \geqslant 3$.
Ключевые слова: метод Ньютона, матрица Гессе, нижние оценки, методы высокого порядка, тензорные методы, проксимальный быстрый градиентный метод.
The global rate of convergence for optimal tensor methods in smooth convex optimization
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 737-753Просмотров за год: 75.In this work we consider Monteiro – Svaiter accelerated hybrid proximal extragradient (A-HPE) framework and accelerated Newton proximal extragradient (A-NPE) framework. The last framework contains an optimal method for rather smooth convex optimization problems with second-order oracle. We generalize A-NPE framework for higher order derivative oracle (schemes). We replace Newton’s type step in A-NPE that was used for auxiliary problem by Newton’s regularized (tensor) type step (Yu. Nesterov, 2018). Moreover we generalize large step A-HPE/A-NPE framework by replacing Monteiro – Svaiter’s large step condition so that this framework could work for high-order schemes. The main contribution of the paper is as follows: we propose optimal highorder methods for convex optimization problems. As far as we know for that moment there exist only zero, first and second order optimal methods that work according to the lower bounds. For higher order schemes there exists a gap between the lower bounds (Arjevani, Shamir, Shiff, 2017) and existing high-order (tensor) methods (Nesterov – Polyak, 2006; Yu.Nesterov, 2008; M. Baes, 2009; Yu.Nesterov, 2018). Asymptotically the ratio of the rates of convergences for the best existing methods and lower bounds is about 1.5. In this work we eliminate this gap and show that lower bounds are tight. We also consider rather smooth strongly convex optimization problems and show how to generalize the proposed methods to this case. The basic idea is to use restart technique until iteration sequence reach the region of quadratic convergence of Newton method and then use Newton method. One can show that the considered method converges with optimal rates up to a logarithmic factor. Note, that proposed in this work technique can be generalized in the case when we can’t solve auxiliary problem exactly, moreover we can’t even calculate the derivatives of the functional exactly. Moreover, the proposed technique can be generalized to the composite optimization problems and in particular to the constraint convex optimization problems. We also formulate a list of open questions that arise around the main result of this paper (optimal universal method of high order e.t.c.).
-
О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.
Ключевые слова: задача выпуклой онлайн-оптимизации, негладкая задача условной оптимизации, адаптивный зеркальный спуск, липшицев функционал, стохастический (суб)градиент.
On some stochastic mirror descent methods for constrained online optimization problems
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217Просмотров за год: 42.The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.
-
Приближение аналитических функций повторными суммами Валле Пуссена
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 367-377Работа посвящена вопросам приближения периодических функций высокой гладкости средними арифметическими суммами Фурье. Наиболее естественным и простым примером линейного процесса аппроксимации непрерывных периодических функций действительной переменной является приближение элементами последовательностей частичных сумм ряда Фурье. Известно, что последовательности частичных сумм ряда Фурье не являются равномерно сходящимися на всем пространстве C 2$\pi$-периодических непрерывных функций. Значительное число работ данного направления посвящено изучению аппроксимативных свойств методов приближения, которые для заданной функции $f$ образуются с помощью преобразований частичных сумм ее ряда Фурье и позволяют построить последовательности тригонометрических полиномов, которые равномерно сходятся для каждой функции $f \in C$. На протяжении последних десятилетий широко изучаются суммы Валле Пуссена и их частные случаи суммы Фейера. Одним из наиболее важных направлений в этой области является изучение асимптотического поведения верхних граней уклонений средних арифметических сумм Фурье по различным классам периодических функций. Методы исследования интегральных представлений уклонений тригонометрических полиномов, которые порождаются линейными методами суммирования рядов Фурье, возникли и получили свое развитие в работах С.М. Никольского, С.Б. Стечкина, Н.П. Корнейчука, В.К. Дзядыка и их учеников.
Целью работы является систематизация известных результатов, касающихся приближения классов периодических функций высокой гладкости средними арифметическими суммами Фурье, и представление новых фактов, полученных для их частных случаев. Изучены аппроксимативные свойства тригонометрических полиномов, порождаемых повторным применением метода суммирования Валле Пуссена, на классах периодических функций, которые можно регулярно продолжить в фиксированную полосу комплексной плоскости. Получены асимптотические формулы для верхних граней уклонений в равномерной метрике $r$-повторных сумм Валле Пуссена на классах аналитических периодических функций. Указаны условия, при которых повторные суммы Валле Пуссена обеспечивают лучший порядок приближения, чем обычные.
Approximation of analytic functions by repeated de la Vallee Poussin sums
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 367-377Просмотров за год: 45.The paper deals with the problems of approximation of periodic functions of high smoothness by arithmetic means of Fourier sums. The simplest and natural example of a linear process of approximation of continuous periodic functions of a real variable is the approximation of these functions by partial sums of the Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the entire class of continuous $2\pi$-periodic functions. In connection with this, a significant number of papers is devoted to the study of the approximative properties of other approximation methods, which are generated by certain transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for each function $f \in C$. In particular, over the past decades, de la Vallee Poussin sums and Fejer sums have been widely studied. One of the most important directions in this field is the study of the asymptotic behavior of upper bounds of deviations of arithmetic means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol’sky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk, etc.
The aim of the work systematizes known results related to the approximation of classes of periodic functions of high smoothness by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of $r$-repeated de la Vallee Poussin sums on the classes of periodic functions that can be regularly extended into the fixed strip of the complex plane. We obtain asymptotic formulas for upper bounds of the deviations of repeated de la Vallee Poussin sums taken over classes of periodic analytic functions. In certain cases, these formulas give a solution of the corresponding Kolmogorov–Nikolsky problem. We indicate conditions under which the repeated de la Vallee Poussin sums guarantee a better order of approximation than ordinary de la Vallee Poussin sums.
-
Нижние оценки для методов типа условного градиента для задач минимизации гладких сильно выпуклых функций
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 213-223В данной работе рассматриваются методы условного градиента для оптимизации сильно выпуклых функций. Это методы, использующие линейный минимизационный оракул, то есть умеющие вычислять решение задачи
$$ \text{Argmin}_{x\in X}{\langle p,\,x \rangle} $$
для заданного вектора $p \in \mathbb{R}^n$. Существует целый ряд методов условного градиента, имеющих линейную скорость сходимости в сильно выпуклом случае. Однако во всех этих методах в оценку скорости сходимости входит размерность задачи, которая в современных приложениях может быть очень большой. В данной работе доказывается, что в сильно выпуклом случае скорость сходимости методов условного градиента в лучшем случае зависит от размерности задачи $n$ как $\widetilde{\Omega}\left(\!\sqrt{n}\right)$. Таким образом, методы условного градиента могут оказаться неэффективными для решения сильно выпуклых оптимизационных задач больших размерностей.
Отдельно рассматривается приложение методов условного градиента к задачам минимизации квадратичной формы. Уже была доказана эффективность метода Франк – Вульфа для решения задачи квадратичной оптимизации в выпуклом случае на симплексе (PageRank). Данная работа показывает, что использование методов условного градиента для минимизации квадратичной формы в сильно выпуклом случае малоэффективно из-за наличия размерности в оценке скорости сходимости этих методов. Поэтому рассматривается метод рестартов условного градиента (Shrinking Conditional Gradient). Его отличие от методов условного градиента заключается в том, что в нем используется модифицированный линейный минимизационный оракул, который для заданного вектора $p \in \mathbb{R}^n$ вычисляет решение задачи $$ \text{Argmin}\{\langle p, \,x \rangle\colon x\in X, \;\|x-x_0^{}\| \leqslant R \}. $$ В оценку скорости сходимости такого алгоритма размерность уже не входит. С помощью рестартов метода условного градиента получена сложность (число арифметических операций) минимизации квадратичной формы на $\infty$-шаре. Полученная оценка работы метода сравнима со сложностью градиентного метода.
Ключевые слова: метод Франк – Вульфа, рестарты.
Lower bounds for conditional gradient type methods for minimizing smooth strongly convex functions
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 213-223In this paper, we consider conditional gradient methods for optimizing strongly convex functions. These are methods that use a linear minimization oracle, which, for a given vector $p \in \mathbb{R}^n$, computes the solution of the subproblem
\[ \text{Argmin}_{x\in X}{\langle p,\,x \rangle}. \]There are a variety of conditional gradient methods that have a linear convergence rate in a strongly convex case. However, in all these methods, the dimension of the problem is included in the rate of convergence, which in modern applications can be very large. In this paper, we prove that in the strongly convex case, the convergence rate of the conditional gradient methods in the best case depends on the dimension of the problem $ n $ as $ \widetilde {\Omega} \left(\!\sqrt {n}\right) $. Thus, the conditional gradient methods may turn out to be ineffective for solving strongly convex optimization problems of large dimensions.
Also, the application of conditional gradient methods to minimization problems of a quadratic form is considered. The effectiveness of the Frank – Wolfe method for solving the quadratic optimization problem in the convex case on a simplex (PageRank) has already been proved. This work shows that the use of conditional gradient methods to solve the minimization problem of a quadratic form in a strongly convex case is ineffective due to the presence of dimension in the convergence rate of these methods. Therefore, the Shrinking Conditional Gradient method is considered. Its difference from the conditional gradient methods is that it uses a modified linear minimization oracle. It's an oracle, which, for a given vector $p \in \mathbb{R}^n$, computes the solution of the subproblem \[ \text{Argmin}\{\langle p, \,x \rangle\colon x\in X, \;\|x-x_0^{}\| \leqslant R \}. \] The convergence rate of such an algorithm does not depend on dimension. Using the Shrinking Conditional Gradient method the complexity (the total number of arithmetic operations) of solving the minimization problem of quadratic form on a $ \infty $-ball is obtained. The resulting evaluation of the method is comparable to the complexity of the gradient method.
Keywords: Frank –Wolfe method, Shrinking Conditional Gradient. -
Полулокальные сглаживающие S-сплайны
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 349-357Настоящая работа посвящена периодическим и непериодическим полулокальным сглаживающим сплайнам или S-сплайнам класса Cp, состоящим из полиномов степени n.
Первые p + 1 коэффициентов каждого полинома задаются значениями предыдущего полинома и его p первых производных в точке склейки, остальные n − p коэффициентов при старших производных полинома определяются методом наименьших квадратов. Эти условия дополняются или начальными условиями (непериодический случай), или условием периодичности сплайн-функции на отрезке определения. В работе выписана система линейных уравнений, определяющих коэффициенты полиномов, составляющих сплайн. Матрица системы имеет блочный вид. Доказаны теоремы существования и единственности. Показано, что сходимость сплайнов к исходной функции зависит от величин собственных значений матрицы устойчивости. Приведены примеры устойчивых S-сплайнов.Ключевые слова: аппроксимация, сглаживающий полулокальный сплайн, численный анализ, численные методы.Просмотров за год: 1. Цитирований: 6 (РИНЦ).Semilocal smoothing splines or S-splines from class C p are considered. These splines consist of polynomials of a degree n, first p + 1 coefficients of each polynomial are determined by values of the previous polynomial and p its derivatives at the point of splice, coefficients at higher terms of the polynomial are determined by the least squares method. These conditions are supplemented by the periodicity condition for the spline function on the whole segment of definition or by initial conditions. Uniqueness and existence theorems are proved. Stability and convergence conditions for these splines are established.
-
Критерии и сходимость фокусной аппроксимации
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 379-394Исследуются методы решения задачи фокусной аппроксимации — приближения по точечно заданной гладкой замкнутой эмпирической кривой многофокусными лемнискатами. Анализируются критерии и сходимость разработанных методов приближения, как в вещественной, так и в комплексной интерпретации. Доказывается топологическая эквивалентность используемых критериев.
Ключевые слова: кривые, аппроксимация, лемнискаты, фокусы, критерий близости кривых, базис, форма, инвариант, алгоритм, степени свободы.
Criteria and convergence of the focal approxmation
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 379-394Methods of the solution of a problem of focal approximation — approach on point-by-point given smooth closed empirical curve by multifocal lemniscates are investigated. Criteria and convergence of the developed approached methods with use of the description, both in real, and in complex variables are analyzed. Topological equivalence of the used criteria is proved.
Keywords: curves, approximation, lemniscates, foci, criterion of curves nearness, basic, shape, invariant, algorithm, freedom degrees.Просмотров за год: 2.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"