Текущий выпуск Номер 1, 2021 Том 13
Результаты поиска по 'tensor methods':
Найдено статей: 5
  1. Найштут Ю.С.
    Решение краевых задач теории тонких упругих оболочек методом Неймана
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1143-1153

    Изучаются возможности применения метода Неймана для решения краевых задач теории тонких упругих оболочек. Приводится вариационная формулировка задач статического расчета оболочек, позволяющая рассматривать проблемы в рамках пространств обобщенных функций. Доказывается сходимость процедуры Неймана для оболочек с отверстиями, когда граничный контур закреплен не полностью. Численная реализация метода Неймана обычно требует значительного времени для получения надежного результата. В статье предлагается способ, улучшающий скорость сходимости процесса, позволяющий применить параллельные вычисления и их контроль во время работы алгоритма.

    Nayshtut Yu.S.
    Neumann's method to solve boundary problems of elastic thin shells
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1143-1153

    This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neumann's method is proved for the shells with holes when the boundary of the domain is not completely fixed. Numerical implementation of the Neumann's method normally takes a lot of time before some reliable results can be achieved. This paper suggests a way to improve convergence of the process and allows for parallel computing and checkout procedure during calculations.

    Просмотров за год: 3.
  2. Бреев А.И., Шаповалов А.В.
    Поляризация вакуума скалярного поля на группах Ли с биинвариантной метрикой
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 989-999

    В работе рассматривается эффект поляризации вакуума скалярного поля на группах Ли с биинвариантной метрикой Робертсона–Уокера. При помощи метода орбит найдены выражения для вакуумных средних тензора энергии-импульса скалярного поля, которые определяются характером представления группы. Показана совместность уравнений Эйнштейна с данным тензором энергии-импульса. В качестве примера рассмотрена модель перемешанного мира.

    Breev A.I., Shapovalov A.V.
    Vacuum polarization of scalar field on Lie groups with Bi-invariant metric
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 989-999

    We consider vacuum polarization of a scalar field on the Lie groups with a bi-invariant metric of Robertson-Walker type. Using the method of orbits we found expression for the vacuum expectation values of the energy-momentum tensor of the scalar field which are determined by the representation character of the group. It is shown that Einstein’s equations with the energy-momentum tensor are consistent. As an example, we consider isotropic Bianchi type IX model.

    Просмотров за год: 2.
  3. Гасников А.В., Горбунов Э.А., Ковалев Д.А., Мохаммед А.А., Черноусова Е.О.
    Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 737-753

    В данной работе рассматривается проксимальный быстрый градиентный метод Монтейро – Свайтера (2013 г.), в котором используется один шаг метода Ньютона для приближенного решения вспомогательной задачи на каждой итерации проксимального метода. Метод Монтейро – Свайтера является оптимальным (по числу вычислений градиента и гессиана оптимизируемой функции) для достаточно гладких задач выпуклой оптимизации в классе методов, использующих только градиент и гессиан оптимизируемой функции. За счет замены шага метода Ньютона на шаг недавно предложенного тензорного метода Ю. Е. Нестерова (2018 г.), а также за счет специального обобщения условия подбора шага в проксимальном внешнем быстром градиентном методе удалось предложить оптимальный тензорный метод, использующий старшие производные. В частности, такой тензорный метод, использующий производные до третьего порядка включительно, оказался достаточно практичным ввиду сложности итерации, сопоставимой со сложностью итерации метода Ньютона. Таким образом, получено конструктивное решение задачи, поставленной Ю. Е. Нестеровым в 2018 г., об устранении зазора в точных нижних и завышенных верхних оценках скорости сходимости для имеющихся на данный момент тензорных методов порядка $p \geqslant 3$.

    Gasnikov A.V., Gorbunov E.A., Kovalev D.A., Mohammed A.A., Chernousova E.O.
    The global rate of convergence for optimal tensor methods in smooth convex optimization
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 737-753

    In this work we consider Monteiro – Svaiter accelerated hybrid proximal extragradient (A-HPE) framework and accelerated Newton proximal extragradient (A-NPE) framework. The last framework contains an optimal method for rather smooth convex optimization problems with second-order oracle. We generalize A-NPE framework for higher order derivative oracle (schemes). We replace Newton’s type step in A-NPE that was used for auxiliary problem by Newton’s regularized (tensor) type step (Yu. Nesterov, 2018). Moreover we generalize large step A-HPE/A-NPE framework by replacing Monteiro – Svaiter’s large step condition so that this framework could work for high-order schemes. The main contribution of the paper is as follows: we propose optimal highorder methods for convex optimization problems. As far as we know for that moment there exist only zero, first and second order optimal methods that work according to the lower bounds. For higher order schemes there exists a gap between the lower bounds (Arjevani, Shamir, Shiff, 2017) and existing high-order (tensor) methods (Nesterov – Polyak, 2006; Yu.Nesterov, 2008; M. Baes, 2009; Yu.Nesterov, 2018). Asymptotically the ratio of the rates of convergences for the best existing methods and lower bounds is about 1.5. In this work we eliminate this gap and show that lower bounds are tight. We also consider rather smooth strongly convex optimization problems and show how to generalize the proposed methods to this case. The basic idea is to use restart technique until iteration sequence reach the region of quadratic convergence of Newton method and then use Newton method. One can show that the considered method converges with optimal rates up to a logarithmic factor. Note, that proposed in this work technique can be generalized in the case when we can’t solve auxiliary problem exactly, moreover we can’t even calculate the derivatives of the functional exactly. Moreover, the proposed technique can be generalized to the composite optimization problems and in particular to the constraint convex optimization problems. We also formulate a list of open questions that arise around the main result of this paper (optimal universal method of high order e.t.c.).

    Просмотров за год: 75.
  4. Куликов Ю.М., Сон Э.Е.
    Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903

    В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.

    Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.

    Kulikov Y.M., Son E.E.
    CABARET scheme implementation for free shear layer modeling
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903

    In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.

    The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods

    Просмотров за год: 17.
  5. Аристова Е.Н., Байдин Д.Ф.
    Экономичный метод решения уравнения переноса в 2D цилиндрической и 3D гексагональной геометриях для метода квазидиффузии
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 279-286

    В работе описан предложенный экономичный метод решения стационарного уравнения переноса в x-y-z-геометрии. Решение уравнения проводится на гексагональной сетке, отражающей структуру поперечного сечения активной зоны реактора. Использованный метод коротких характеристик наследует методические наработки двумерного расчета. Применяются характеристический и консервативно-характеристический методы решения уравнения в ячейке сетки. В трехмерной геометрии подтверждено преимущество консервативного метода и хорошая точность полученного численного решения, особенно компонентов тензора квазидиффузии.

    Aristova E.N., Baydin D.F.
    Efficient method of the transport equation calculation in 2D cylindrical and 3D hexagonal geometries for quasi-diffusion method
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 279-286

    Efficient method for numerical solving of the steady transport equation in x-y-z-geometry has been suggested. The equation is being solved on hexagonal mesh, reflecting real structure of the reactor active zone cross-section. Method of characteristics is used, that inherits all the outcomes from the two-dimensional r-z-geometry calculation. Two variants of the method of characteristics have been applied for solving the transport equation in a cell: method of short characteristics and its conservative modification. It has been confirmed that in three-dimensional geometry conservative method has advantage over pure characteristic and it produces highly accurate solution, especially for quasi-diffusion tensor components.

    Цитирований: 4 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus