Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов

 pdf (220K)

Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.

Ключевые слова: аппроксимация, сплайн, численные методы, метод конечных элементов, математическая физика, теория упругости
Цитата: Федосова А.Н., Силаев Д.А. Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов // Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988
Citation in English: Fedosova A.N., Silaev D.A. Mathematical modeling of bending of a circular plate using $S$-splines // Computer Research and Modeling, 2015, vol. 7, no. 5, pp. 977-988

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00, 03.01.00, 03.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science