Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'hyperbolic systems of differential equations':
Найдено статей: 10
  1. Малинецкий Г.Г., Фаллер Д.С.
    Переход к хаосу в системах «реакция–диффузия». Простейшие модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12

    В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.

    Malinetsky G.G., Faller D.S.
    Transition to chaos in the «reaction–diffusion» systems. The simplest models
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 3-12

    The article discusses the emergence of chaotic attractors in the system of three ordinary differential equations arising in the theory of «reaction-diffusion» systems. The dynamics of the corresponding one- and two-dimensional maps and Lyapunov exponents of such attractors are studied. It is shown that the transition to chaos is in accordance with a non-traditional scenario of repeated birth and disappearance of chaotic regimes, which had been previously studied for one-dimensional maps with a sharp apex and a quadratic minimum. Some characteristic features of the system — zones of bistability and hyperbolicity, the crisis of chaotic attractors — are studied by means of numerical analysis.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  2. Лобанов А.И.
    Научные и педагогические школы Александра Сергеевича Холодова
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 561-579

    В развитии науки важную роль играют научные школы — объединения исследователей, связанные общей проблемой, идеями и методами, используемыми для решения проблемы. Научные школы формируются вокруг лидера и объединяющей идеи.

    За время научной деятельности академика А. С. Холодова вокруг него сформировалось несколько научных школ. В обзоре делается попытка представить основные научные направления, вокруг которых сформировались яркие коллективы с общими системами взглядов и подходами к исследованиям. В обзоре отмечается эта общая основа. Во-первых, это развитие группы численных методов для решения систем дифференциальных уравнений в частных производных гиперболического типа — сеточно-характеристические методы. Во-вторых, описание численных методов в пространствах неопределенных коэф- фициентов. Этот подход развивался как для всех типов уравнений в частных производных, так и для обыкновенных дифференциальных уравнений.

    На основе предложенных А. С. Холодовым численных подходов сложились научные коллективы, работающие в разных предметных областях. Это математическое моделирование динамики плазмы, динамики деформируемого твердого тела, некоторых задач биологии, биофизики, медицинской физики и биомеханики. Сравнительно новые направления — решение задач на графах (процессы транспортировки электроэнергии, моделирование транспортных потоков на дорожной сети и т. д.).

    В обзоре делается попытка отследить деятельность научных школ от момента их зарождения до настоящего времени, проследить связь работ А. С. Холодова с работами его учеников и коллег. Полный обзор деятельности всех научных школ, сформировавшихся вокруг Александра Сергеевча, невозможен ввиду огромного количества и разнообразия научных результатов.

    Делается также попытка связать деятельность научных школ с появлением научно-образовательной школы в Московском физико-техническом институте.

    Lobanov A.I.
    Scientific and pedagogical schools founded by A. S. Kholodov
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579

    In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.

    The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.

    This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.

    On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).

    There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.

    The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.

    Просмотров за год: 42.
  3. В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.

    Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.

    Просмотров за год: 9. Цитирований: 1 (РИНЦ).
  4. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

    Kholodov Y.A.
    Development of network computational models for the study of nonlinear wave processes on graphs
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814

    In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.

  5. Суров В.С.
    Релаксационная модель вязкого теплопроводного газа
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 23-43

    Представлена гиперболическая модель вязкого теплопроводного газа, в которой для гиперболизации уравнений использован подход Максвелла–Каттанео, обеспечивающий распространение волн с конечными скоростями. В модифицированной модели вместо оригинальных законов Стокса и Фурье использовались их релаксационные аналоги и показано, что при стремлении времен релаксации $\tau_\sigma^{}$ и $\tau_w^{}$ к нулю гиперболизированные уравнения приводятся к классической системе Навье–Стокса негиперболического типа с бесконечными скоростями перемещения вязких и тепловых волн. Отмечено, что рассматриваемая в работе гиперболизированная система уравнений движения вязкого теплопроводного газа инвариантна не только по отношению к преобразованиям Галилея, но и к повороту, поскольку при дифференцировании по времени компонентов тензора вязких напряжений использована производная Яуманна. Для интегрирования уравнений модели применены гибридный метод Годунова (ГМГ) и многомерный узловой метод характеристик. ГМГ предназначен для интегрирования гиперболических систем, в которых имеются как уравнения, записанные в дивергентном виде, так и уравнения, не приводящиеся к таковому (оригинальный метод Годунова применяется только для систем уравнений, представленных в дивергентной форме). При вычислении потоковых переменных на гранях смежных ячеек использован линеаризованный римановский решатель. Для дивергентных уравнений применена конечно-объемная, а для недивергентных — конечноразностная аппроксимация. Для расчета ряда задач в работе также использовался неконсервативный многомерный узловой метод характеристик, который базируется на расщеплении исходной системы уравнений на ряд одномерных подсистем, для решения которых использован одномерный узловой метод характеристик. С помощью описанных численных методов решен ряд модельных одномерных задач о распаде произвольного разрыва, а также рассчитано двумерное течение вязкого газа при взаимодействии ударного скачка с прямоугольной ступенькой, непроницаемой для газа.

    Surov V.S.
    Relaxation model of viscous heat-conducting gas
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 23-43

    A hyperbolic model of a viscous heat-conducting gas is presented, in which the Maxwell – Cattaneo approach is used to hyperbolize the equations, which provides finite wave propagation velocities. In the modified model, instead of the original Stokes and Fourier laws, their relaxation analogues were used and it is shown that when the relaxation times $\tau_\sigma^{}$ и $\tau_w^{}$ tend to The hyperbolized equations are reduced to zero to the classical Navier – Stokes system of non-hyperbolic type with infinite velocities of viscous and heat waves. It is noted that the hyperbolized system of equations of motion of a viscous heat-conducting gas considered in this paper is invariant not only with respect to the Galilean transformations, but also with respect to rotation, since the Yaumann derivative is used when differentiating the components of the viscous stress tensor in time. To integrate the equations of the model, the hybrid Godunov method (HGM) and the multidimensional nodal method of characteristics were used. The HGM is intended for the integration of hyperbolic systems in which there are equations written both in divergent form and not resulting in such (the original Godunov method is used only for systems of equations presented in divergent form). A linearized solver’s Riemann is used to calculate flow variables on the faces of adjacent cells. For divergent equations, a finitevolume approximation is applied, and for non-divergent equations, a finite-difference approximation is applied. To calculate a number of problems, we also used a non-conservative multidimensional nodal method of characteristics, which is based on splitting the original system of equations into a number of one-dimensional subsystems, for solving which a one-dimensional nodal method of characteristics was used. Using the described numerical methods, a number of one-dimensional problems on the decay of an arbitrary rupture are solved, and a two-dimensional flow of a viscous gas is calculated when a shock jump interacts with a rectangular step that is impermeable to gas.

  6. Шепелев В.В., Фортова С.В., Опарина Е.И.
    Использование программного комплекса Turbulence Problem Solver (TPS) для численного моделирования взаимодействия лазерного излучения с металлами
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 619-630

    Работа посвящена использованию программного пакета Turbulence Problem Solver (TPS) для численного моделирования широкого спектра лазерных задач. Возможности пакета продемонстрированы на примере численного моделирования взаимодействия фемтосекундных лазерных импульсов с металлическими пленками. Разработанный авторами программный пакет TPS предназначен для численного решения гиперболических систем дифференциальных уравнений на многопроцессорных вычислительных системах с распределенной памятью. Пакет представляет собой современный и расширяемый программный продукт. Архитектура пакета дает исследователю возможность моделировать различные физические процессы единообразно, с помощью различных численных методик и программных блоков, содержащих специфические для каждой задачи начальные условия, граничные условия и источниковые компоненты. Пакет предоставляет пользователю возможность самостоятельно расширять функциональность пакета, добавляя новые классы задач, вычислительных методов, начальных и граничных условий, а также уравнений состояния вещества. Реализованные в программном пакете численные методики тестировались на тестовых задачах в одномерной, двумерной и трехмерной геометрии, в состав которых вошли задачи Римана о распаде произвольного разрыва с различными конфигурациями точного решения.

    Тонкие пленки на подложках — важный класс мишеней для наномодификации поверхностей в плазмонике или сенсорных приложениях. Этой тематике посвящено множество статей. Большинство из них, однако, концентрируются на динамике самой пленки, уделяя мало внимания подложке и рассматри- вая ее просто как объект, поглощающий первую волну сжатия и не влияющий на возникающие вследствие облучения поверхностные структуры. В работе подробно описан вычислительный эксперимент по численному моделированию взаимодействия единичного ультракороткого лазерного импульса с золотой пленкой, напыленной на толстую стеклянную подложку. Использовалась равномерная прямоугольная сетка и численный метод Годунова первого порядка точности. Представленные результаты расчетов позволили подтвердить теорию об ударно-волновом механизме образования отверстий в металле при фемтосекундной лазерной абляции для случая тонкой золотой пленки толщиной около 50 нм на толстой стеклянной подложке.

    Shepelev V.V., Fortova S.V., Oparina E.I.
    Application of Turbulence Problem Solver (TPS) software complex for numerical modeling of the interaction between laser radiation and metals
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 619-630

    The work is dedicated to the use of the software package Turbulence Problem Solver (TPS) for numerical simulation of a wide range of laser problems. The capabilities of the package are demonstrated by the example of numerical simulation of the interaction of femtosecond laser pulses with thin metal bonds. The software package TPS developed by the authors is intended for numerical solution of hyperbolic systems of differential equations on multiprocessor computing systems with distributed memory. The package is a modern and expandable software product. The architecture of the package gives the researcher the opportunity to model different physical processes in a uniform way, using different numerical methods and program blocks containing specific initial conditions, boundary conditions and source terms for each problem. The package provides the the opportunity to expand the functionality of the package by adding new classes of problems, computational methods, initial and boundary conditions, as well as equations of state of matter. The numerical methods implemented in the software package were tested on test problems in one-dimensional, two-dimensional and three-dimensional geometry, which included Riemann's problems on the decay of an arbitrary discontinuity with different configurations of the exact solution.

    Thin films on substrates are an important class of targets for nanomodification of surfaces in plasmonics or sensor applications. Many articles are devoted to this subject. Most of them, however, focus on the dynamics of the film itself, paying little attention to the substrate, considering it simply as an object that absorbs the first compression wave and does not affect the surface structures that arise as a result of irradiation. The paper describes in detail a computational experiment on the numerical simulation of the interaction of a single ultrashort laser pulse with a gold film deposited on a thick glass substrate. The uniform rectangular grid and the first-order Godunov numerical method were used. The presented results of calculations allowed to confirm the theory of the shock-wave mechanism of holes formation in the metal under femtosecond laser action for the case of a thin gold film with a thickness of about 50 nm on a thick glass substrate.

    Просмотров за год: 15.
  7. Схемы WENO (взвешенные, существенно не осциллирующие схемы) в настоящее время имеют достаточно обширную область применения для аппроксимации разрывных решений в уравнениях в частных производных. Данные схемы применялись для прямого численного моделирования и моделирования динамики больших вихрей в задачах газовой динамики, задачах МГД и даже для задач нейтронной кинетики. Данная работа посвящена уточнению некоторых характеристик схем WENO и численному моделированию характерных задач, которые позволяют сделать выводы обоб ласти применимости данных схем. Первая часть работы содержала результаты по доказательству свойств аппроксимации, устойчивости и сходимости схем WENO5, WENO7, WENO9, WENO11 и WENO13. Во второй части работы проводится модифицированный волновой анализ, позволяющий сделать вывод о дисперсионных и диссипативных свойствах схем. Далее, проводится численное моделирование ряда характерных задач для уравнений гиперболического типа: уравнений переноса (одномерное и двухмерное), уравнения Хопфа, уравнения Бюргерса (с малой диссипацией) и уравнения динамики невязкого газа (одномерное и двухмерное). Для каждой из задач, подразумевающих гладкое решение, приведено практическое вычисление порядка аппроксимации с помощью метода Рунге. Во всех задачах проверяются выводы, сделанные в первой части работы по влиянию шага по времени на нелинейные свойства схем. В частности, для уравнений переноса разрывной функции и уравнений Хопфа показано, что невыполнение указанных рекомендаций ведет вначале к росту вариации решения, а затем включается диссипативный нелинейный механизм схемы и аппроксимация падает. Практически подтверждены выводы первой части по условиям устойчивости. Для одномерного уравнения Бюргерса проведено моделирование затухания случайно распределенных начальных условий в периодической области и выполнено сопоставление со спектральным методом. Делается вывод о применимости схем WENO7–WENO13 для прямого численного моделирования турбулентности. В конце демонстрируются возможности схем на начально-краевых задачах для уравнений динамики невязкого газа: неустойчивость Рэлея–Тейлора и отражение ударной волны от клина с образованием сложной конфигурации ударных волн и разрывов.

    WENO schemes (weighted, essentially non oscillating) are currently having a wide range of applications as approximate high order schemes for discontinuous solutions of partial differential equations. These schemes are used for direct numerical simulation (DNS) and large eddy simmulation in the gas dynamic problems, problems for DNS in MHD and even neutron kinetics. This work is dedicated to clarify some characteristics of WENO schemes and numerical simulation of specific tasks. Results of the simulations can be used to clarify the field of application of these schemes. The first part of the work contained proofs of the approximation properties, stability and convergence of WENO5, WENO7, WENO9, WENO11 and WENO13 schemes. In the second part of the work the modified wave number analysis is conducted that allows to conclude the dispersion and dissipative properties of schemes. Further, a numerical simulation of a number of specific problems for hyperbolic equations is conducted, namely for advection equations (one-dimensional and two-dimensional), Hopf equation, Burgers equation (with low dissipation) and equations of non viscous gas dynamics (onedimensional and two-dimensional). For each problem that is implying a smooth solution, the practical calculation of the order of approximation via Runge method is performed. The influence of a time step on nonlinear properties of the schemes is analyzed experimentally in all problems and cross checked with the first part of the paper. In particular, the advection equations of a discontinuous function and Hopf equations show that the failure of the recommendations from the first part of the paper leads first to an increase in total variation of the solution and then the approximation is decreased by the non-linear dissipative mechanics of the schemes. Dissipation of randomly distributed initial conditions in a periodic domain for one-dimensional Burgers equation is conducted and a comparison with the spectral method is performed. It is concluded that the WENO7–WENO13 schemes are suitable for direct numerical simulation of turbulence. At the end we demonstrate the possibility of the schemes to be used in solution of initial-boundary value problems for equations of non viscous gas dynamics: Rayleigh–Taylor instability and the reflection of the shock wave from a wedge with the formation a complex configuration of shock waves and discontinuities.

    Просмотров за год: 13.
  8. Лобанов А.И., Миров Ф.Х.
    Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164

    Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.

    В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.

    Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.

    Lobanov A.I., Mirov F.Kh.
    On the using the differential schemes to transport equation with drain in grid modeling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1149-1164

    Modern power transportation systems are the complex engineering systems. Such systems include both point facilities (power producers, consumers, transformer substations, etc.) and the distributed elements (f.e. power lines). Such structures are presented in the form of the graphs with different types of nodes under creating the mathematical models. It is necessary to solve the system of partial differential equations of the hyperbolic type to study the dynamic effects in such systems.

    An approach similar to one already applied in modeling similar problems earlier used in the work. New variant of the splitting method was used proposed by the authors. Unlike most known works, the splitting is not carried out according to physical processes (energy transport without dissipation, separately dissipative processes). We used splitting to the transport equations with the drain and the exchange between Reimann’s invariants. This splitting makes possible to construct the hybrid schemes for Riemann invariants with a high order of approximation and minimal dissipation error. An example of constructing such a hybrid differential scheme is described for a single-phase power line. The difference scheme proposed is based on the analysis of the properties of the schemes in the space of insufficient coefficients.

    Examples of the model problem numerical solutions using the proposed splitting and the difference scheme are given. The results of the numerical calculations shows that the difference scheme allows to reproduce the arising regions of large gradients. It is shown that the difference schemes also allow detecting resonances in such the systems.

  9. Голубев В.И., Шевченко А.В., Петров И.Б.
    Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910

    Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.

    В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.

    Golubev V.I., Shevchenko A.V., Petrov I.B.
    Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910

    The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.

    In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.

  10. Ха Д.Т., Цибулин В.Г.
    Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466

    Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.

    Ha D.T., Tsybulin V.G.
    Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1451-1466

    Dynamic scenarios leading to multistability in the form of continuous families of stable solutions are studied for a system of autonomous differential equations. The approach is based on determining the cosymmetries of the problem, calculating stationary solutions, and numerically-analytically studying their stability. The analysis is carried out for equations of the Lotka –Volterra type, describing the interaction of two predators feeding on two related prey species. For a system of ordinary differential equations of the 4th order with 11 real parameters, a numerical-analytical study of possible interaction scenarios was carried out. Relationships are found analytically between the control parameters under which the cosymmetry linear in the variables of the problem is realized and families of stationary solutions (equilibria) arise. The case of multicosymmetry is established and explicit formulas for a two-parameter family of equilibria are presented. The analysis of the stability of these solutions made it possible to reveal the division of the family into regions of stable and unstable equilibria. In a computational experiment, the limit cycles branching off from unstable stationary solutions are determined and their multipliers corresponding to multistability are calculated. Examples of the coexistence of families of stable stationary and non-stationary solutions are presented. The analysis is carried out for the growth functions of logistic and “hyperbolic” types. Depending on the parameters, scenarios can be obtained when only stationary solutions (coexistence of prey without predators and mixed combinations), as well as families of limit cycles, are realized in the phase space. The multistability scenarios considered in the work allow one to analyze the situations that arise in the presence of several related species in the range. These results are the basis for subsequent analysis when the parameters deviate from cosymmetric relationships.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.