Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Вейвлет-преобразование с вейвлетом Морле: методы расчета, основанные на решении диффузионных дифференциальных уравнений
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 5-12Просмотров за год: 5. Цитирований: 3 (РИНЦ).Представлены два алгоритма проведения непрерывного вейвлет-преобразования с вейвлетом Морле. Первый представляет собой решение системы дифференциальных уравнений в частных производных, в которой преобразуемый сигнал играет роль начальных условий. Второй позволяет исследовать влияние базисной частоты путем диффузионного сглаживания начальных данных, модулированных гармоническими функциями. Эти подходы проиллюстрированы анализом хаотических колебаний связанных систем Ресслера.
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Исследование клеточной динамики с помощью интерференционной микроскопии с применением вейвлет-анализа
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 77-83Методом лазерной интерференционной микроскопии исследовали внутриклеточную динамику эритроцитов, нейронов и тучных клеток. Показано, что существуют регулярные изменения оптических свойств клеток, отражающие кооперативные процессы в примембранной и центральной областях клеток. Показано, что характерные частоты изменений показателя преломления могут служить маркерами специфических клеточных процессов.
Ключевые слова: лазерная интерференционная микроскопия, вейвлет-анализ.Просмотров за год: 1. Цитирований: 5 (РИНЦ). -
Анализ изображений в системах управления беспилотными автомобилями на основе модели энергетических признаков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 369-376Просмотров за год: 31. Цитирований: 1 (РИНЦ).В статье показана актуальность научно-исследовательских работ в области создания систем управления беспилотными автомобилями на основе технологий компьютерного зрения. Средства компьютерного зрения используются для решения большого количества различных задач, в том числе для определения местоположения автомобиля, обнаружения препятствий, определения пригодного для парковки места. Данные задачи являются ресурсоемкими и должны выполняться в реальном режиме времени. Поэтому актуальна разработка эффективных моделей, методов и средств, обеспечивающих достижение требуемых показателей времени и точности для применения в системах управления беспилотными автомобилями. При этом важное значение имеет выбор модели представления изображений. В данной работе рассмотрена модель на основе вейвлет-преобразования, позволяющая сформировать признаки, характеризующие оценки энергии точек изображения и отражающие их значимость с точки зрения вклада в общую энергию изображения. Для формирования модели энергетических признаков выполняется процедура, основанная на учете зависимостей между вейвлет-коэффициентами различных уровней и применении эвристических настроечных коэффициентов для усиления или ослабления влияния граничных и внутренних точек. На основе предложенной модели можно построить описания изображений для выделения и анализа их характерных особенностей, в том числе для выделения контуров, регионов и особых точек. Эффективность предлагаемого подхода к анализу изображений обусловлена тем, что рассматриваемые объекты, такие как дорожные знаки, дорожная разметка или номера автомобилей, которые необходимо обнаруживать и идентифицировать, характеризуются соответствующими признаками. Кроме того, использование вейвлет-преобразований позволяет производить одни и те же базовые операции для решения комплекса задач в бортовых системах беспилотных автомобилей, в том числе для задач первичной обработки, сегментации, описания, распознавания и сжатия изображений. Применение такого унифицированного подхода позволит сократить время на выполнение всех процедур и снизить требования к вычислительным ресурсам бортовой системы беспилотного автотранспортного средства.
-
Топологические основы классификации электрокардиограмм
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 895-915Просмотров за год: 17. Цитирований: 4 (РИНЦ).В настоящей работе предложен новый подход к выявлению неконтрастно выраженных диагностически значимых изменений в электрокардиограммах. Подход основан на анализе топологических трансформаций в вейвлет-спектрах, ассоциированных с электрокардиограммами. Обсуждаются возможности практического использования развитого подхода.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"