Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'lattice':
Найдено статей: 29
  1. В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.

    Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.

    В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:

    1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;

    2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.

    Matyushkin I.V., Rubis P.D., Zapletina M.A.
    Experimental study of the dynamics of single and connected in a lattice complex-valued mappings: the architecture and interface of author’s software for modeling
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1101-1124

    The paper describes a free software for research in the field of holomorphic dynamics based on the computational capabilities of the MATLAB environment. The software allows constructing not only single complex-valued mappings, but also their collectives as linearly connected, on a square or hexagonal lattice. In the first case, analogs of the Julia set (in the form of escaping points with color indication of the escape velocity), Fatou (with chaotic dynamics highlighting), and the Mandelbrot set generated by one of two free parameters are constructed. In the second case, only the dynamics of a cellular automaton with a complex-valued state of the cells and of all the coefficients in the local transition function is considered. The abstract nature of object-oriented programming makes it possible to combine both types of calculations within a single program that describes the iterated dynamics of one object.

    The presented software provides a set of options for the field shape, initial conditions, neighborhood template, and boundary cells neighborhood features. The mapping display type can be specified by a regular expression for the MATLAB interpreter. This paper provides some UML diagrams, a short introduction to the user interface, and some examples.

    The following cases are considered as example illustrations containing new scientific knowledge:

    1) a linear fractional mapping in the form $Az^{n} +B/z^{n} $, for which the cases $n=2$, $4$, $n>1$, are known. In the portrait of the Fatou set, attention is drawn to the characteristic (for the classical quadratic mapping) figures of <>, showing short-period regimes, components of conventionally chaotic dynamics in the sea;

    2) for the Mandelbrot set with a non-standard position of the parameter in the exponent $z(t+1)\Leftarrow z(t)^{\mu } $ sketch calculations reveal some jagged structures and point clouds resembling Cantor's dust, which are not Cantor's bouquets that are characteristic for exponential mapping. Further detailing of these objects with complex topology is required.

  2. Веричев Н.Н., Веричев С.Н., Ерофеев В.И.
    Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.

    Verichev N.N., Verichev S.N., Erofeev V.I.
    Stationary states and bifurcations in a one-dimensional active medium of oscillators
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512

    This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.

  3. Кривовичев Г.В.
    Модифицированный вариант метода решеточных уравнений Больцмана для расчета течений вязкой несжимаемой жидкости
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 365-381

    Предложен модифицированный вариант метода решеточных уравнений Больцмана для расчета течений вязкой несжимаемой жидкости. Метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее о мгновенной максвеллизации функций распределения. Метод основан на использовании явных схем и не приводит к сложностям при распараллеливании вычислений. С помощью метода фон Неймана показана устойчивость метода в широком диапазоне изменения входного параметра. Эффективность предложенного метода показана при решении задачи о плоском течении в каверне.

    Krivovichev G.V.
    Modification of the lattice Boltzmann method for the computations of viscid incompressible fluid flows
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 365-381

    Modification of the lattice Boltzmann method for computation of viscous incompressible fluid flows is proposed. The method is based on the splitting of differential operator in Navier–Stokes equation and on the idea of instantaneous Maxwellisation of distribution function. The method is based on explicit schemes and didn’t have any problems with parallelization of computations. The stability of the method is demonstrated using von Neumann method in a wide range of input parameter values. The efficiency of the method proposed is demonstrated on the solution of the problem of 2D lid-driven cavity flow.

    Цитирований: 5 (РИНЦ).
  4. Булинская Е.В.
    Isotropic Multidimensional Catalytic Branching Random Walk with Regularly Varying Tails
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1033-1039

    The study completes a series of the author’s works devoted to the spread of particles population in supercritical catalytic branching random walk (CBRW) on a multidimensional lattice. The CBRW model describes the evolution of a system of particles combining their random movement with branching (reproduction and death) which only occurs at fixed points of the lattice. The set of such catalytic points is assumed to be finite and arbitrary. In the supercritical regime the size of population, initiated by a parent particle, increases exponentially with positive probability. The rate of the spread depends essentially on the distribution tails of the random walk jump. If the jump distribution has “light tails”, the “population front”, formed by the particles most distant from the origin, moves linearly in time and the limiting shape of the front is a convex surface. When the random walk jump has independent coordinates with a semiexponential distribution, the population spreads with a power rate in time and the limiting shape of the front is a star-shape nonconvex surface. So far, for regularly varying tails (“heavy” tails), we have considered the problem of scaled front propagation assuming independence of components of the random walk jump. Now, without this hypothesis, we examine an “isotropic” case, when the rate of decay of the jumps distribution in different directions is given by the same regularly varying function. We specify the probability that, for time going to infinity, the limiting random set formed by appropriately scaled positions of population particles belongs to a set $B$ containing the origin with its neighborhood, in $\mathbb{R}^d$. In contrast to the previous results, the random cloud of particles with normalized positions in the time limit will not concentrate on coordinate axes with probability one.

    Bulinskaya E.V.
    Isotropic Multidimensional Catalytic Branching Random Walk with Regularly Varying Tails
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1033-1039

    The study completes a series of the author’s works devoted to the spread of particles population in supercritical catalytic branching random walk (CBRW) on a multidimensional lattice. The CBRW model describes the evolution of a system of particles combining their random movement with branching (reproduction and death) which only occurs at fixed points of the lattice. The set of such catalytic points is assumed to be finite and arbitrary. In the supercritical regime the size of population, initiated by a parent particle, increases exponentially with positive probability. The rate of the spread depends essentially on the distribution tails of the random walk jump. If the jump distribution has “light tails”, the “population front”, formed by the particles most distant from the origin, moves linearly in time and the limiting shape of the front is a convex surface. When the random walk jump has independent coordinates with a semiexponential distribution, the population spreads with a power rate in time and the limiting shape of the front is a star-shape nonconvex surface. So far, for regularly varying tails (“heavy” tails), we have considered the problem of scaled front propagation assuming independence of components of the random walk jump. Now, without this hypothesis, we examine an “isotropic” case, when the rate of decay of the jumps distribution in different directions is given by the same regularly varying function. We specify the probability that, for time going to infinity, the limiting random set formed by appropriately scaled positions of population particles belongs to a set $B$ containing the origin with its neighborhood, in $\mathbb{R}^d$. In contrast to the previous results, the random cloud of particles with normalized positions in the time limit will not concentrate on coordinate axes with probability one.

  5. Божко А.Н.
    Структурные модели изделия в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091

    Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.

    Bozhko A.N.
    Structural models of product in CAD-systems
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1079-1091

    Computer-aided assembly planning of complex products is an important area of modern information technology. The sequence of assembly and decomposition of the product into assembly units largely depend on the mechanical structure of a technical system (machine, mechanical device, etc.). In most modern research, the mechanical structure of products is modeled using a graph of connections and its various modifications. The coordination of parts during assembly can be achieved by implementing several connections at the same time. This generates a $k$-ary basing relation on a set of product parts, which cannot be correctly described by graph means. A hypergraph model of the mechanical structure of a product is proposed. Modern discrete manufacturing uses sequential coherent assembly operations. The mathematical description of such operations is the normal contraction of edges of the hypergraph model. The sequence of contractions that transform the hypergraph into a point is a description of the assembly plan. Hypergraphs for which such a transformation exists are called $s$-hypergraphs. $S$-hypergraphs are correct mathematical models of the mechanical structures of any assembled products. A theorem on necessary conditions for the contractibility of $s$-hypergraphs is given. It is shown that the necessary conditions are not sufficient. An example of a noncontractible hypergraph for which the necessary conditions are satisfied is given. This means that the design of a complex technical system may contain hidden structural errors that make assembly of the product impossible. Therefore, finding sufficient conditions for contractibility is an important task. Two theorems on sufficient conditions for contractibility are proved. They provide a theoretical basis for developing an efficient computational procedure for finding all $s$-subgraphs of an $s$-hypergraph. An $s$-subgraph is a model of any part of a product that can be assembled independently. These are, first of all, assembly units of various levels of hierarchy. The set of all $s$-subgraphs of an $s$-hypergraph, ordered by inclusion, is a lattice. This model can be used to synthesize all possible sequences of assembly and disassembly of a product and its components. The lattice model of the product allows you to analyze geometric obstacles during assembly using algebraic means.

  6. Максимова О.В., Григорьев В.И.
    Четырехфакторный вычислительный эксперимент для задачи случайного блуждания на двумерной решетке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 905-918

    Случайный поиск в настоящее время стал распространенным и эффективным средством решения сложных задач оптимизации и адаптации. В работе рассматривается задача о средней длительности случайного поиска одним объектом другого в зависимости от различных факторов на квадратной решетке. Решение поставленной задачи было реализовано при помощи проведения полного эксперимента с 4 факторами и ортогональным планом в 54 строки. В рамках каждой строки моделировались случайные блуждания двух точек с заданными начальными условиями и правила перехода, затем замерялась продолжительность поиска одного объекта другим. В результате построена регрессионная модель, отражающая среднюю длительность случайного поиска объекта в зависимости от четырех рассматриваемых факторов, задающих начальные положения двух объектов, условия их передвижения и обнаружения. Среди рассмотренных факторов, влияющих на среднее время поиска, определены наиболее значимые. По построенной модели проведена интерпретация в задаче случайного поиска объекта. Важным результатом работы стало то, что с помощью модели выявлено качественное и количественное влияние первоначальных позиций объектов, размера решетки и правил перемещения на среднее время продолжительности поиска. Показано, что начальное соседство объектов на решетке не гарантирует быстрый поиск, если каждый из них передвигается. Помимо этого, количественно оценено, во сколько раз может затянуться или сократиться среднее время поиска объекта при увеличении скорости ищущего объекта на 1 ед., а также при увеличении размера поля на 1 ед., при различных начальных положениях двух объектов. Выявлен экспоненциальный характер роста числа шагов поиска объекта при увеличении размера решетки при остальных фиксированных факторах. Найдены условия наиболее большого увеличения средней продолжительности поиска: максимальная удаленность объектов в сочетании с неподвижностью одного из них при изменении размеров поля на 1 ед. (т. е., к примеру, с $4 \times 4$ на $5 \times 5$) может увеличить в среднем продолжительность поиска в $e^{1.69} \approx 5.42$. Поставленная в работе задача может быть актуальна с точки зрения применения как в погранометрике для обеспечения безопасности государства, так и, к примеру, в теории массового обслуживания.

    Maksimova O.V., Grigoryev V.I.
    Four-factor computing experiment for the random walk on a two-dimensional square field
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 905-918

    Nowadays the random search became a widespread and effective tool for solving different complex optimization and adaptation problems. In this work, the problem of an average duration of a random search for one object by another is regarded, depending on various factors on a square field. The problem solution was carried out by holding total experiment with 4 factors and orthogonal plan with 54 lines. Within each line, the initial conditions and the cellular automaton transition rules were simulated and the duration of the search for one object by another was measured. As a result, the regression model of average duration of a random search for an object depending on the four factors considered, specifying the initial positions of two objects, the conditions of their movement and detection is constructed. The most significant factors among the factors considered in the work that determine the average search time are determined. An interpretation is carried out in the problem of random search for an object from the constructed model. The important result of the work is that the qualitative and quantitative influence of initial positions of objects, the size of the lattice and the transition rules on the average duration of search is revealed by means of model obtained. It is shown that the initial neighborhood of objects on the lattice does not guarantee a quick search, if each of them moves. In addition, it is quantitatively estimated how many times the average time of searching for an object can increase or decrease with increasing the speed of the searching object by 1 unit, and also with increasing the field size by 1 unit, with different initial positions of the two objects. The exponential nature of the growth in the number of steps for searching for an object with an increase in the lattice size for other fixed factors is revealed. The conditions for the greatest increase in the average search duration are found: the maximum distance of objects in combination with the immobility of one of them when the field size is changed by 1 unit. (that is, for example, with $4 \times 4$ at $5 \times 5$) can increase the average search duration in $e^{1.69} \approx 5.42$. The task presented in the work may be relevant from the point of view of application both in the landmark for ensuring the security of the state, and, for example, in the theory of mass service.

    Просмотров за год: 21.
  7. Божко А.Н.
    Анализ механических структур сложных технических систем
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 903-916

    Работа посвящена структурному анализу сложных технических систем. Рассматриваются механические структуры, свойства которых влияют на поведение изделия в процессе сборки, ремонта и эксплуатации. Основным источником данных о деталях и механических связях между ними является гиперграф. Эта модель формализует многоместное отношение базирования. Она корректно описывает связность и взаимную координацию деталей, которые достигаются в процессе сборки изделия. При разработке сложных изделий в CAD-системах инженер часто допускает тяжелые проектные ошибки: перебазирование деталей и несеквенциальность сборочных операций. Предложены эффективные способы идентификации данных структурных дефектов. Показано, что свойство независимой собираемости можно представить как оператор замыкания на булеане множества деталей изделия. Образы этого оператора представляют собой связные координированные совокупности деталей, которые можно собрать независимо. Описана решеточная модель, которая представляет собой пространство состояний изделия в процессе сборки, разборки и декомпозиции на сборочные единицы. Решеточная модель служит источником разнообразной структурной информации о проекте. Предложены численные оценки мощности множества допустимых альтернатив в задачах выбора последовательности сборки и декомпозиции на сборочные единицы. Для многих технических операций (например, контроль, испытания и др.) необходимо монтировать все детали-операнды в одну сборочную единицу. Разработана простая формализация технических условий, требующих включения (исключения) деталей в сборочную единицу (из сборочной единицы). Приведена теорема, которая дает математическое описание декомпозиции изделия на сборочные единицы в точных решеточных терминах. Предложен способ численной оценки робастности механической структурыс ложной технической системы.

    Bozhko A.N.
    Analysis of mechanical structures of complex technical systems
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 903-916

    The work is devoted to the structural analysis of complex technical systems. Mechanical structures are considered, the properties of which affect the behavior of products during assembly, repair and operation. The main source of data on parts and mechanical connections between them is a hypergraph. This model formalizes the multidimensional basing relation. The hypergraph correctly describes the connectivity and mutual coordination of parts, which is achieved during the assembly of the product. When developing complex products in CAD systems, an engineer often makes serious design mistakes: overbasing of parts and non-sequential assembly operations. Effective ways of identifying these structural defects have been proposed. It is shown that the property of independent assembly can be represented as a closure operator whose domain is the boolean of the set of product parts. The images of this operator are connected and coordinated subsets of parts that can be assembled independently. A lattice model is described, which is the state space of the product during assembly, disassembly and decomposition into assembly units. The lattice model serves as a source of various structural information about the project. Numerical estimates of the cardinality of the set of admissible alternatives in the problems of choosing an assembly sequence and decomposition into assembly units are proposed. For many technical operations (for example, control, testing, etc.), it is necessary to mount all the operand parts in one assembly unit. A simple formalization of the technical conditions requiring the inclusion (exclusion) of parts in the assembly unit (from the assembly unit) has been developed. A theorem that gives an mathematical description of product decomposition into assembly units in exact lattice terms is given. A method for numerical evaluation of the robustness of the mechanical structure of a complex technical system is proposed.

  8. Грачев В.А., Найштут Ю.С.
    Сетчатые развертывающиеся оболочки из полос, образованных трапециевидными пластинами
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 63-73

    Изучаются развертывающиеся системы, составленные из набора трапециевидных пластин. Средние линии пластин в первоначальном положении пакета представляют собой плоскую кривую. Доказывается, что при разворачивании пакета из тонких пластинок, образуется поверхность, аппроксимирующая оболочку практически любой кривизны. Строится кинематика континуальной модели методом подвижного репера Картана, обобщающая ранее опубликованные результаты авторов. Показаны приложения к оболочкам вращения. Представлены экспериментальные модели развертывающихся систем.

    Grachev V.A., Nayshtut Yu.S.
    Latticed deployable shells made of strips assembled from trapezoid plates
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 63-73

    This paper covers deployable systems assembled from a set of trapezium plates. The middles lines of the plates represent a plane curve in the original position of the package. It is proved that when the package of thin plates is unwrapped, a surface approximating a shell of nearly any curvature is formed. Kinematics of the continual model is analyzed by the method of Cartan moving hedron, extending the results the authors published earlier. Various applications of rotating shells are shown. Experimental models of deployable latticed systems are demonstrated.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  9. Кривовичев Г.В.
    О расчете течений вязкой жидкости методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 165-178

    Предложен модифицированный метод решеточных уравнений Больцмана для расчета течений вязкой ньютоновской жидкости. Модифицированный метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее мгновенной максвеллизации функции распределения. При переходе от одного временного слоя к другому последовательно численно решаются задачи для системы решеточных кинетических уравнений и системы линейных уравнений диффузии. Эффективность предложенного метода по сравнению с обычным методом решеточных уравнений Больцмана показана при решении задачи о плоском течении в каверне в случае различных значений числа Рейнольдса и при различных разбиениях сетки.

    Krivovichev G.V.
    On the computation of viscous fluid flows by the lattice Boltzmann method
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 165-178

    Modification of the lattice Boltzmann method for computation of viscous Newtonian fluid flows is considered. Modified method is based on the splitting of differential operator in Navier–Stokes equation and on the idea of instantaneous Maxwellisation of distribution function. The problems for the system of lattice kinetic equations and for the system of linear diffusion equations are solved while one time step is realized. The efficiency of the method proposed in comparison with the ordinary lattice Boltzmann method is demonstrated on the solution of the problem of planar flow in cavern in wide range of Reynolds number and various grid resolution.

    Цитирований: 8 (РИНЦ).
  10. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Krivovichev G.V.
    Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500

    Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.