Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'фракталы':
Найдено статей: 4
  1. Матюшкин И.В., Заплетина М.А.
    Компьютерное исследование голоморфной динамики экспоненциального и линейно-экспоненциального отображений
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 383-405

    Работа принадлежит направлению экспериментальной математики, исследующей свойства математических объектов вычислительными средствами компьютера. Базовым отображением служит экспоненциальное, топологические свойства (букеты Кантора) которого отличаются от свойств полиномиальных и рациональных функций на комплексной плоскости. Предметом исследования являются характер и особенности множеств Фату и Жюлиа, а также точек равновесия и орбит нуля трех итерированных комплекснозначных отображений: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, где $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. Для квазилинейного отображения g, не обладающего свойством аналитичности, было обнаружено два бифуркационных перехода: рождение новой точки равновесия (для него было найдено критическое значение параметра, а сама бифуркация представляет собой смешанный случай «вилки» и седлоузельного перехода) и переход к радикальной трансформации множества Фату. Выявлен нетривиальный характер сходимости к фиксированной точке, связанный с появлением «долин» на графике скоростей сходимости. Для двух других отображений существенна монопериодичность режимов, отмечен феномен «удвоения периода» (в одном случае по пути $39\to 3$, в другом — по пути $17\to 2$), причем обнаружено совпадение кратности периода и числа рукавов спирали множества Жюлиа в окрестности фиксированной точки. Приведен богатый иллюстративный материал, численные результаты экспериментов и сводные таблицы, отражающие параметрическую зависимость отображений. Сформулированы вопросы для дальнейшего исследования средствами традиционной математики.

    Просмотров за год: 51. Цитирований: 1 (РИНЦ).
  2. В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.

    Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.

    В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:

    1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;

    2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.

  3. Любушин А.А., Фарков Ю.А.
    Синхронные компоненты финансовых временных рядов
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655

    В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.

    Просмотров за год: 12. Цитирований: 2 (РИНЦ).
  4. Булатов А.А., Сысоев А.А., Иудин Д.И.
    Моделирование инициации молнии на базе динамического графа
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 125-147

    Несмотря на многочисленные достижения современной науки, до сих пор остается нераскрытой проблема зарождения молниевого разряда в безэлектродном грозовом облаке, максимальная напряженность электрического поля в котором примерно на порядок меньше диэлектрической прочности воздуха. Хотя не вызывает сомнений тот факт, что развитие разряда начинается с появления в облаке положительных стримеров, развитие которых становится возможным при примерно вдвое меньших значениях электрического поля по сравнению с отрицательными, на настоящий момент остается неизученным вопрос о том, каким образом холодные слабопроводящие стримерные системы объединяются в горячий хорошо проводящий лидерный канал, способный к самостоятельному распространению за счет эффективной поляризации в относительно слабом внешнем поле. В данной работе представлена самоорганизующаяся транспортная модель, реализованная на примере формирования фрактального древа электрического разряда в грозовом облаке и направленная на численное моделирование процесса начальной стадии развития молниевого разряда. Среди инновационных особенностей нашего подхода, отсутствующих в других численных моделях развития молнии, можно выделитьот сутствие привязки элементов проводящей структуры графа к узлам пространственной решетки, высокое пространственно-временное разрешение и учет временной эволюции электрических параметров транспортных каналов. Кроме того, модельучи тывает известную из многочисленных экспериментов асимметрию полей развития положительных и отрицательных стримеров. В рамках используемого подхода результирующий хорошо проводящий лидерный канал формируется за счет коллективного эффекта объединения токов десятков тысяч взаимодействующих между собой стримеров, каждый из которых изначально обладает пренебрежимо малой проводимостью и температурой, не отличающейся от температуры окружающей среды. Модельное биполярное древо представляет собой направленный граф (имеет положительную и отрицательную части) и имеет морфологические и электро-динамические характеристики, промежуточные между лабораторной длинной искрой и развитой молнией. Модель имеет универсальный характер, что при необходимости позволяет использовать ее в рамках других задач, связанных с исследованием транспортных (в широком смысле слова) сетей.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.