Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'cellular automata':
Найдено статей: 17
  1. Предложено обобщение блочного клеточного автомата Марголуса на гексагональную сетку. Проведена статистическая обработка результатов вероятностных клеточно-автоматных вычислений для ряда модификаций схемы, решающей тестовую задачу диффузии вещества. Показано, что выбор блоков в виде гексагонов на 25% эффективнее, чем в виде Y-блоков. Показано, что алгоритмы имеют полиномиальную сложность, причем степень полинома для параллельных вычислителей лежит в пределах 0.6÷0.8, а для последовательных — в пределах 1.5÷1.7. Исследовалось влияние внедренных в поле клеточного автомата дефектных ячеек на скорость сходимости.

    Gavrilov S.V., Matyushkin I.V.
    Statistical analysis of Margolus’s block-rotating mechanism cellular automation modeling the diffusion in a medium with discrete singularities
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1155-1175

    The generalization of Margolus’s block cellular automaton on a hexagonal grid is formulated. Statistical analysis of the results of probabilistic cellular automation for vast variety of this scheme solving the test task of diffusion is done. It is shown that the choice of the hexagon blocks is 25% more efficient than Y-blocks. It is shown that the algorithms have polynomial complexity, and the polynom degree lies within 0.6÷0.8 for parallel computer, and in the range 1.5÷1.7 for serial computer. The effects of embedded into automaton’s field defective cells on the rate of convergence are studied also.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  2. Матюшкин И.В.
    Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 2
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 547-566

    Во второй части статьи, носящей более прикладной характер, завершается рассмотрение трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). На нескольких примерах, относящихся к гексагональной сетке, показана специфика такого решения и подтверждаются выводы первой части, в частности о выполнении свойства консервативности и эффекте избыточной гексагональной симметрии (ИГС).

    При решении задачи Неймана для колебаний круглой мембраны показана критичность требований к дискретизации условий для граничных КА-ячеек. Для квазиодномерной задачи «диффузия в полупространство» сравниваются КА-расчеты, проводимые по простой схеме и с использованием обобщенного блочно-поворотного механизма Марголуса. При решении смешанной задачи для классического случая колебания круглой мембраны с закрепленными концами показано, что одновременное применение метода Кранка–Николсон и учет членов второго порядка позволяет избежать ИГС-эффекта, наблюдаемого нами для более простой схемы. С точки зрения КА центральное место занимает уравнение диффузии, на пути решения которого на бесконечных временах находится решение краевой задачи для уравнения Лапласа, а путем введения вектор-переменной становится разрешимо волновое уравнение (по крайней мере скалярное).

    На примере центрально-симметричной задачи Неймана продемонстрирован новый способ введения пространственных производных в postfix-процедуру КА, отражающую временные производные (основанием является уравнение непрерывности). Для случая центральной симметрии эмпирически найдено значение константы, связывающее эти производные. Показано, что препятствием к применению КА-методов для таких задач являются низкая скорость сходимости и точность, лимитируемая точностью дискретизации границ, а не формальной точностью метода (4-й порядок); наша рекомендация состоит в использовании техники multigrid. При решении квазиодномерного уравнения диффузии (двумерным КА) показано, что блочно-поворотный КА (по механизму Марголуса) более эффективен, чем простой КА.

    Matyushkin I.V.
    Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 2
    Computer Research and Modeling, 2017, v. 9, no. 4, pp. 547-566

    The second part of paper is devoted to final study of three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Specificity of this solution has been shown by different examples, which are related to the hexagonal grid. Also the next statements that are mentioned in the first part have been proved: the matter conservation law and the offensive effect of excessive hexagonal symmetry.

    From the point of CA view diffusion equation is the most important. While solving of diffusion equation at the infinite time interval we can find solution of boundary value problem of Laplace equation and if we introduce vector-variable we will solve wave equation (at least, for scalar). The critical requirement for the sampling of the boundary conditions for CA-cells has been shown during the solving of problem of circular membrane vibrations with Neumann boundary conditions. CA-calculations using the simple scheme and Margolus rotary-block mechanism were compared for the quasione-dimensional problem “diffusion in the half-space”. During the solving of mixed task of circular membrane vibration with the fixed ends in a classical case it has been shown that the simultaneous application of the Crank–Nicholson method and taking into account of the second-order terms is allowed to avoid the effect of excessive hexagonal symmetry that was studied for a simple scheme.

    By the example of the centrally symmetric Neumann problem a new method of spatial derivatives introducing into the postfix CA procedure, which is reflecting the time derivatives (on the base of the continuity equation) was demonstrated. The value of the constant that is related to these derivatives has been empirically found in the case of central symmetry. The low rate of convergence and accuracy that limited within the boundaries of the sample, in contrary to the formal precision of the method (4-th order), prevents the using of the CAmethods for such problems. We recommend using multigrid method. During the solving of the quasi-diffusion equations (two-dimensional CA) it was showing that the rotary-block mechanism of CA (Margolus mechanism) is more effective than simple CA.

    Просмотров за год: 6.
  3. Матюшкин И.В., Заплетина М.А.
    Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57

    Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).

    В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.

    Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.

    Matyushkin I.V., Zapletina M.A.
    Cellular automata review based on modern domestic publications
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 9-57

    The paper contains the analysis of the domestic publications issued in 2013–2017 years and devoted to cellular automata. The most of them concern on mathematical modeling. Scientometric schedules for 1990–2017 years have proved relevance of subject. The review allows to allocate the main personalities and the scientific directions/schools in modern Russian science, to reveal their originality or secondness in comparison with world science. Due to the authors choice of national publications basis instead of world, the paper claims the completeness and the fact is that about 200 items from the checked 526 references have an importance for science.

    In the Annex to the review provides preliminary information about CA — the Game of Life, a theorem about gardens of Eden, elementary CAs (together with the diagram of de Brujin), block Margolus’s CAs, alternating CAs. Attention is paid to three important for modeling semantic traditions of von Neumann, Zuse and Zetlin, as well as to the relationship with the concepts of neural networks and Petri nets. It is allocated conditional 10 works, which should be familiar to any specialist in CA. Some important works of the 1990s and later are listed in the Introduction.

    Then the crowd of publications is divided into categories: the modification of the CA and other network models (29 %), Mathematical properties of the CA and the connection with mathematics (5 %), Hardware implementation (3 %), Software implementation (5 %), Data Processing, recognition and Cryptography (8 %), Mechanics, physics and chemistry (20 %), Biology, ecology and medicine (15 %), Economics, urban studies and sociology (15 %). In parentheses the share of subjects in the array are indicated. There is an increase in publications on CA in the humanitarian sphere, as well as the emergence of hybrid approaches, leading away from the classic CA definition.

    Просмотров за год: 58.
  4. Матюшкин И.В.
    Клеточно-автоматные методы решения классических задач математической физики на гексагональной сетке. Часть 1
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 167-186

    Статья носит методический характер и посвящена решению трех классических уравнений математической физики (Лапласа, диффузии и волнового) простейшими численными схемами в формулировке клеточных автоматов (КА). Особое внимание уделяется законам сохранения вещества и неприятному эффекту избыточной гексагональной симметрии (ИГС).

    Делается вывод о том, что по сравнению с классическими конечно-разностными методами, хотя локальная функция перехода (ЛФП) КА терминологически эквивалентна шаблону вычислительной двухслоевой явной схемы, различие состоит в замене матричных (direct) методов (например, метода прогонки для трехдиагональной матрицы) итерационными. Из этого следуют более жесткие требования к дискретизации условий для граничных КА-ячеек.

    Для гексагональной сетки и консервативных граничных условий записана корректная ЛФП для граничных ячеек, справедливая, по крайней мере, для границ прямоугольной и круговой формы. Предложена идея разделения ЛФП на internal, boundary и postfix. На примере этой задачи заново осмыслено значение числа Куранта–Леви как соотношения скорости сходимости КА к решению задачи, данному на фиксированный момент времени, и скорости изменения самого решения в динамике.

    Matyushkin I.V.
    Cellular automata methods in mathematical physics classical problems solving on hexagonal grid. Part 1
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 167-186

    The paper has methodical character; it is devoted to three classic partial differential equations (Laplace, Diffusion and Wave) solution using simple numerical methods in terms of Cellular Automata. Special attention was payed to the matter conservation law and the offensive effect of excessive hexagonal symmetry.

    It has been shown that in contrary to finite-difference approach, in spite of terminological equivalence of CA local transition function to the pattern of computing double layer explicit method, CA approach contains the replacement of matrix technique by iterative ones (for instance, sweep method for three diagonal matrixes). This suggests that discretization of boundary conditions for CA-cells needs more rigid conditions.

    The correct local transition function (LTF) of the boundary cells, which is valid at least for the boundaries of the rectangular and circular shapes have been firstly proposed and empirically given for the hexagonal grid and the conservative boundary conditions. The idea of LTF separation into «internal», «boundary» and «postfix» have been proposed. By the example of this problem the value of the Courant-Levy constant was re-evaluated as the CA convergence speed ratio to the solution, which is given at a fixed time, and to the rate of the solution change over time.

    Просмотров за год: 6.
  5. Лобанов А.И.
    Модели клеточных автоматов
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 273-293

    Обзор содержит введение в модели клеточных автоматов. Описаны три автомата на плоскости: клеточный автомат Винера-Розенблюта, игра «Жизнь» и автомат Кохомото-Ооно для моделирования систем «реакция–диффузия». Построены обобщения клеточного автомата игры «Жизнь» на случай пространства произвольной размерности и автомата Кохомото-Ооно для случая трех пространственных измерений.

    Lobanov A.I.
    Model of cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 273-293

    An introduction to the models of cellular automata is given. The three automata described on the plane are: Viner-Rosenbluth cellular automata, the game of Life and Kohomoto-Oono automata for modelling «reaction-diffusion» systems. There is built the generalization of cellular automata of the game of Life to arbitrary dimension of space and the generalization of Kohomoto-Oono automata in 3D.

    Просмотров за год: 64. Цитирований: 21 (РИНЦ).
  6. Красников Г.Я., Зайцев Н.А., Матюшкин И.В., Коробов С.В.
    Особенности визуализации клеточных автоматов в области наноэлектроники
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 735-756

    Представлена формализация моделей визуализации клеточных автоматов (КА), рассмотрена их классификация. Также описаны возможные подходы к генерации звукорядов. Приведены частные случаи вариантов визуализации для КА различной размерности. На примере простого 3D КА указаны особенности визуализации наноразмерных систем.

    Krasnikov G.Ya., Zaitsev N.A., Matyushkin I.V., Korobov S.V.
    The peculiarities of cellular automata visualization in nanoelectronics
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 735-756

    The general formalization of visualization models in cellular automata (CA) scope is presented, their classification is examined. It also describes possible approaches to the sound scales generation. We consider special cases of visualization manners for CA of various dimensions. By a simple 3D CA example the features of nanoscale systems imaging are indicated.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).
  7. Субботина А.Ю., Хохлов Н.И.
    Реализация клеточных автоматов «игра “Жизнь”» и клеточного автомата Кохомото-Ооно с применением технологии MPI
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 319-322

    Данная работа является анализом результатов, полученных участниками летней школы по высокопроизводительным вычислениям МФТИ-2010 во время практикума по технологии MPI. В качестве проекта была предложена трехмерная версия игры Конвея «Жизнь». Разобраны основные способы решения, используемые участниками при разработке, приведена их теоретическая и практическая оценка по масштабируемости.

    Subbotina A.Y., Khokhlov N.I.
    MPI implementations of Conway’s Game of Life and Kohomoto-Oono cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 319-322

    Results obtained during practical training session on MPI during high perfomance computing summer school MIPT-2010 are discussed. MPI technology were one of technologies proposed to participants for realization of project. 3D version of Conway’s Game of Life was proposed as a project. Algorithms used in the development, theoretical and practical assessment of their scalability is analyzed.

    Просмотров за год: 11.
  8. Зубкова Е.В., Жукова Л.А., Фролов П.В., Шанин В.Н.
    Работы А. С. Комарова по клеточно-автоматному моделированию популяционно-онтогенетических процессов у растений
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 285-295

    Рассмотрены возможности моделирования в технике клеточных автоматов применительно к травянистым растениям и кустарничкам. Приводятся основные положения дискретного описания онтогенезов растений, на которых основывается математическое моделирование. В обзоре обсуждаются основные результаты, полученные с использованием моделей и раскрывающие закономерности функционирования ценопопуляций и сообществ. Описана модель CAMPUS и результаты компьютерного эксперимента по разрастанию двух клонов брусники с разной геометрией побегов. Публикация посвящена работам профессора А. С. Комарова, основоположника направления; дан список его основных публикаций по этой тематике.

    Zubkova E.V., Zhukova L.A., Frolov P.V., Shanin V.N.
    A.S. Komarov’s publications about cellular automata modelling of the population-ontogenetic development in plants: a review
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 285-295

    The possibilities of cellular automata simulation applied to herbs and dwarf shrubs are described. Basicprinciples of discrete description of the ontogenesis of plants on which the mathematical modeling based are presents. The review discusses the main research results obtained with the use of models that revealing the patterns of functioning of populations and communities. The CAMPUS model and the results of computer experiment to study the growth of two clones of lingonberry with different geometry of the shoots are described. The paper is dedicated to the works of the founder of the direction of prof. A. S. Komarov. A list of his major publications on this subject is given.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  9. Алексеенко А.Е., Казённов А.М.
    Реализация клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 323-326

    В данной статье проанализирован опыт преподавания курса «Программирование на CUDA и OpenCL» для участников ежегодной межвузовской молодежной школы по высокопроизводительным вычислениям МФТИ-2010. В статье разобраны как содержимое лекций и семинарские задачи, так и особенности преподнесения материала. Обсуждаются результаты, полученные учащимися при выполнении практических задач. Приводится сравнение быстродействия различных алгоритмов реализации клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL.

    Alekseenko A.E., Kazennov A.M.
    CUDA and OpenCL implementations of Conway’s Game of Life cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 323-326

    In this article the experience of reading “CUDA and OpenCL programming” course during high perfomance computing summer school MIPT-2010 is analyzed. Content of lectures and practical tasks, as well as manner of presenting of the material are regarded. Performance issues of different algorithms implemented by students at practical training session are dicussed.

    Просмотров за год: 9. Цитирований: 3 (РИНЦ).
  10. Белотелов Н.В., Коноваленко И.А.
    Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305

    В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.

    Belotelov N.V., Konovalenko I.A.
    Modeling the impact of mobility of individuals on space-time dynamics of a population by means of a computer model
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 297-305

    A computer model describing the spatial-temporal dynamics of populations of interacting with renewable resource is proposed. The life cycle of the individual is described. The algorithm for spatial mobility of individuals within an area is proposed, which takes into account nutritional and social activity. The paper presents the computational experiments with the model that mimic the movement of herds of animals in the area, and describes the model experiment when the group type of animal behavior due to changes in the characteristics of the environment and animal behavior the herd animals is formed, which later goes again in the group type of animal behavior.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
Страницы: следующая

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus