Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Эффект возбуждения подкритических колебаний в стохастических системах с запаздыванием. Часть II. Управление равновесием жидкости
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 369-389В работе теоретически и экспериментально рассматривается задача об автоматическом поддержании механического равновесия неоднородно нагретой жидкости в термосифоне с помощью подсистемы, которая подавляет конвекцию посредством малых изменений ориентации системы в пространстве. Обнаружено, что чрезмерное усиление обратной связи возбуждает в системе колебания, причина которых кроется в запаздывании работы контроллера. При наличии шума колебания возникают даже тогда, когда детерминистское описание предсказывает стационарное поведение. Получено хорошее согласие между экспериментом и теорией.
Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 369-389Просмотров за год: 1. Цитирований: 6 (РИНЦ).The problem of active control of the mechanical equilibrium of an inhomogeneously heated fluid in a thermosyphon is studied theoretically and experimentally. The control is performed by using a feedback subsystem which inhibits convection by changing the orientation of thermosyphon in space. It is shown that excess feedback leads to the excitation of oscillations which are related to a delay in the controller work. In the presense of noise, the oscillations arise even when deterministic description predicts stationary behaviour. The experimental data and theory are in good agreement.
-
Анализ индуцированных шумом пачечных колебаний в двумерной модели Хиндмарш–Розе
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 605-619В работе исследуется стохастическая динамика двумерной модели Хиндмарш–Розе в параметрической зоне сосуществования устойчивых равновесий и предельных циклов. Изучается явление индуцированных шумом переходов между аттракторами. Под воздействием случайных возмущений равновесные и периодические режимы объединяются в пачечные: система демонстрирует чередование малых колебаний около равновесия с осцилляциями больших амплитуд. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности и предлагается метод оценки критических значений интенсивности шума.
Ключевые слова: модель Хиндмарш–Розе, возбудимость, стохастическая чувствительность, индуцированные шумом переходы, пачечные колебания.
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 605-619Просмотров за год: 1.We study the stochastic dynamics of the two-dimensional Hindmarsh–Rose model in the parametrical zone of coexisting stable equilibria and limit cycles. The phenomenon of noise-induced transitions between the attractors is investigated. Under the random disturbances, equilibrium and periodic regimes combine in bursting regime: the system demonstrates an alternation of small fluctuations near the equilibrium with high amplitude oscillations. This effect is analysed using the stochastic sensitivity function technique and a method of estimation of critical values for noise intensity is proposed.
-
Влияние нерыночного преимущества на равновесие в модели Хотеллинга
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 573-581В работе исследуется модификация модели Хотеллинга, в которой одна из фирм обладает нерыночным преимуществом, введенным по аналогии с валентностью, используемой в задачах политической экономии. Нерыночное (валентное) преимущество может интерпретироваться как реклама (узнаваемость фирмы). Установлено, что при аддитивной функции полезности потребителей, зависящей квадратично от расстояния до фирмы, существует единственное равновесие по Нэшу. Это равновесие значительно «богаче» равновесия в исходной модели Хотеллинга. В частности, дополнительное нерыночное преимущество может быть избыточным и его использование — неэффективным.
Impact of the non-market advantage on equilibrium in A Hotelling model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 573-581The principle of minimal differentiation, based on the Hotelling model, is well known in the economy. It is applicable to horizontal differentiated goods of almost any nature. The Hotelling approach to modeling competition of oligopolies corresponds to a modern description of monopolistic competition with increasing returns to scale and imperfect competition. We develop a modification of the Hotelling model that endows a firm with a non-market advantage, which is introduced alike the valence advantage known in problems of political economy. The nonmarket (valence) advantage can be interpreted as advertisement (brand awareness of firms). Problem statement. Consider two firms competing with prices and location. Homogeneous consumers vary with its location on a segment. They minimize their costs, which additively includes the price of the product and the distance from them to the product. The utility function is linear with respect to the price and quadratic with respect to the distance. It is also expected that one of the firms (for certainty, firm № 1) has a market advantage d. The consumers are assumed to take into account the sum of the distance to the product and the market advantage of firm 1. Thus, the strategy of the firms and the consumers depend on two parameters: the unit t of the transport costs and the non-market advantage d. I explore characteristics of the equilibrium in the model as a function of the non-market advantage for different fixed t. The aim of the research is to assess the impact of the non-market advantage on the equlibrium. We prove that the Nash equilibrium exists and it is unique under additive consumers' preferences de-pending on the square of the distance between consumers and firms. This equilibrium is ‘richer’ than that in the original Hotelling model. In particular, non-market advantage can be excessive and inefficient to use.
-
Пространственно-временная динамика и принцип конкурентного исключения в сообществе
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.
Ключевые слова: сообщество, видовая структура, математическая модель, фактор, неустойчивость по Тьюрингу.
Spatiotemporal dynamics and the principle of competitive exclusion in community
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824Просмотров за год: 11.Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.
-
Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Просмотров за год: 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
-
Численный метод нахождения равновесий Нэша и Штакельберга в моделях контроля качества речных вод
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 653-667В статье рассмотрена задача построения равновесий Нэша и Штакельберга при исследовании динамической системы контроля качества речных вод. Учитывается влияние субъектов управления двух уровней: одного ведущего и нескольких ведомых. В качестве ведущего (супервайзера) выступает природоохранный орган, а в роли ведомых (агентов) — промышленные предприятия. Основной целью супервайзера является поддержание допустимой концентрации загрязняющих веществ в речной воде. Добиться этого он может не единственным образом, поэтому, кроме того, супервайзер стремится к оптимизации своего целевого функционала. Супервайзер воздействует на агентов, назначая величину платы за сброс загрязнений в водоток. Плата за загрязнение от агента поступает в федеральный и местные бюджеты, затем распределяется на общих основаниях. Таким образом, плата увеличивает бюджет супервайзера, что и отражено в его целевом функционале. Причем плата за сброс загрязнений начисляется за количество и/или качество сброшенных загрязнений. К сожалению, для большинства систем контроля качества речных вод такая практика неэффективна из-за малого размера платы за сброс загрязнений. В статье и решается задача определения оптимального размера платы за сброс загрязнений, который позволяет поддерживать качество речной воды в заданном диапазоне.
Агенты преследуют только свои эгоистические цели, выражаемые их целевыми функционалами, и не обращают внимания на состояние речной системы. Управление агента можно рассматривать как часть стока, которую агент очищает, а управление супервайзера — как назначаемый размер платы за сброс оставшихся загрязнений в водоток.
Для описания изменения концентраций загрязняющих веществ в речной системе используется обыкновенное дифференциальное уравнение. Проблема поддержания заданного качества речной воды в рамках предложенной модели исследуется как с точки зрения агентов, так и с точки зрения супервайзера. В первом случае возникает дифференциальная игра в нормальной форме, в которой строится равновесие Нэша, во втором — иерархическая дифференциальная игра, разыгрываемая в соответствии с информационным регламентом игры Штакельберга. Указаны алгоритмы численного построения равновесий Нэша и Штакельберга для широкого класса входных функций. При построении равновесия Нэша возникает необходимость решения задач оптимального управления. Решение этих задач проводится в соответствии с принципом максимума Понтрягина. Строится функция Гамильтона, полученная система дифференциальных уравнений решается численно методом стрельбы и методом конечных разностей. Проведенные численные расчеты показывают, что низкий размер платы за единицу сброшенных в водоток загрязнений приводит к росту концентрации загрязняющих веществ в водотоке, а высокий — к банкротству предприятий. Это приводит к задаче нахождения оптимальной величины платы за сброс загрязнений, то есть к рассмотрению проблемы с точки зрения супервайзера. В этом случае возникает иерархическая дифференциальная игра супервайзера и агентов, в которой ищется равновесие Штакельберга. Возникает задача максимизации целевого функционала супервайзера с учетом управлений агентов, образующих равновесие Нэша. При нахождении оптимальных управлений супервайзера используется метод качественно репрезентативных сценариев, а для агентов — принцип максимума Понтрягина. Проведены численные эксперименты, найден коэффициент системной согласованности. Полученные численные результаты позволяют сделать вывод, что система контроля качества речных вод плохо системно согласована и для достижения стабильного развития системы необходимо иерархическое управление.
Ключевые слова: равновесие Нэша, равновесие Штакельберга, принцип максимума Понтрягина, экономическое управление.
Numerical method for finding Nash and Shtakelberg equilibria in river water quality control models
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 653-667In this paper we consider mathematical model to control water quality. We study a system with two-level hierarchy: one environmental organization (supervisor) at the top level and a few industrial enterprises (agents) at the lower level. The main goal of the supervisor is to keep water pollution level below certain value, while enterprises pollute water, as a side effect of the manufacturing process. Supervisor achieves its goal by charging a penalty for enterprises. On the other hand, enterprises choose how much to purify their wastewater to maximize their income.The fee increases the budget of the supervisor. Moreover, effulent fees are charged for the quantity and/or quality of the discharged pollution. Unfortunately, in practice, such charges are ineffective due to the insufficient tax size. The article solves the problem of determining the optimal size of the charge for pollution discharge, which allows maintaining the quality of river water in the rear range.
We describe system members goals with target functionals, and describe water pollution level and enterprises state as system of ordinary differential equations. We consider the problem from both supervisor and enterprises sides. From agents’ point a normal-form game arises, where we search for Nash equilibrium and for the supervisor, we search for Stackelberg equilibrium. We propose numerical algorithms for finding both Nash and Stackelberg equilibrium. When we construct Nash equilibrium, we solve optimal control problem using Pontryagin’s maximum principle. We construct Hamilton’s function and solve corresponding system of partial differential equations with shooting method and finite difference method. Numerical calculations show that the low penalty for enterprises results in increasing pollution level, when relatively high penalty can result in enterprises bankruptcy. This leads to the problem of choosing optimal penalty, which requires considering problem from the supervisor point. In that case we use the method of qualitatively representative scenarios for supervisor and Pontryagin’s maximum principle for agents to find optimal control for the system. At last, we compute system consistency ratio and test algorithms for different data. The results show that a hierarchical control is required to provide system stability.
-
Теоретико-игровые и рефлексивные модели боевых действий
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 179-203Моделирование боевых действий является актуальной научной и практической задачей, направленной на предоставление командирам и штабам количественных оснований для принятия решений. Авторами предложена функция победы в боевых и военных действиях, основанная на функции конфликта Г. Таллока и учитывающая масштаб боевых (военных) действий. На достаточном объеме данных военной статистики выполнена оценка параметра масштаба и найдены его значения для тактического, оперативного и стратегического уровней. Исследованы теоретико-игровые модели «наступление-оборона», в которых стороны решают ближайшую и последующую задачи, имея построение войск в один или несколько эшелонов. На первом этапе моделирования находится решение ближайшей задачи — прорыв (удержание) пунктов обороны, на втором — решение последующей задачи — разгром противника в глубине обороны (контратака и восстановление обороны). Для тактического уровня с использованием равновесия Нэша найдены решения ближайшей задачи (распределение сил сторон по пунктам обороны) в антагонистической игре по трем критериям: а) прорыв слабейшего пункта; б) прорыв хотя бы одного пункта; в) средневзвешенная вероятность. Показано, что наступающей стороне целесообразно использовать критерий «прорыв хотя бы одного пункта», при котором, при прочих равных условиях, обеспечивается максимальная вероятность прорыва пунктов обороны. На втором этапе моделирования для частного случая (стороны при прорыве и удержании пунктов обороны руководствуются критерием прорыва слабейшего пункта) решена задача распределения сил и средств между тактическими задачами (эшелонами) по двум критериям: а) максимизация вероятности прорыва пункта обороны и вероятности разгрома противника в глубине обороны; б) максимизация минимального значения из названных вероятностей (критерий гарантированного результата). Важным аспектом боевых действий является информированность. Рассмотрены несколько примеров рефлексивных игр (игр, характеризующихся сложной взаимной информированностью) и осуществления информационного управления. Показано, при каких условиях информационное управление увеличивает выигрыш игрока, и найдено оптимальное информационное управление.
Ключевые слова: математическая модель, бой, наступление, оборона, функция победы, теоретико-игровая модель, рефлексивное и информационное управление.
Game-theoretic and reflexive combat models
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 179-203Modeling combat operations is an urgent scientific and practical task aimed at providing commanders and staffs with quantitative grounds for making decisions. The authors proposed the function of victory in combat and military operations, based on the function of the conflict by G. Tullock and taking into account the scale of combat (military) operations. On a sufficient volume of military statistics, the scale parameter was assessed and its values were found for the tactical, operational and strategic levels. The game-theoretic models «offensive – defense», in which the sides solve the immediate and subsequent tasks, having the formation of troops in one or several echelons, have been investigated. At the first stage of modeling, the solution of the immediate task is found — the breakthrough (holding) of defense points, at the second — the solution of the subsequent task — the defeat of the enemy in the depth of the defense (counterattack and restoration of defense). For the tactical level, using the Nash equilibrium, solutions were found for the closest problem (distribution of the forces of the sides by points of defense) in an antagonistic game according to three criteria: a) breakthrough of the weakest point, b) breakthrough of at least one point, and c) weighted average probability. It is shown that it is advisable for the attacking side to use the criterion of «breaking through at least one point», in which, all other things being equal, the maximum probability of breaking through the points of defense is ensured. At the second stage of modeling for a particular case (the sides are guided by the criterion of breaking through the weakest point when breaking through and holding defense points), the problem of distributing forces and facilities between tactical tasks (echelons) was solved according to two criteria: a) maximizing the probability of breaking through the defense point and the probability of defeating the enemy in depth defense, b) maximizing the minimum value of the named probabilities (the criterion of the guaranteed result). Awareness is an important aspect of combat operations. Several examples of reflexive games (games characterized by complex mutual awareness) and information management are considered. It is shown under what conditions information control increases the player’s payoff, and the optimal information control is found.
-
Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.
В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.
Ключевые слова: робототехника, разработка конструкции, система управления, приводы с последовательной упругостью, приводы с переменной упругостью, магнитные пружины, управление с сохранением упругой структуры.
Design, modeling, and control of a variable stiffness joint based on a torsional magnetic spring
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1323-1347Industrial robots have made it possible for robotics to become a worldwide discipline both in economy and in science. However, their capabilities are limited, especially regarding contact tasks where it is required to regulate or at least limit contact forces. At one point, it was noticed that elasticity in the joint transmission, which was treated as a drawback previously, is actually helpful in this regard. This observation led to the introduction of elastic joint robots that are well-suited to contact tasks and cooperative behavior in particular, so they become more and more widespread nowadays. Many researchers try to implement such devices not with trivial series elastic actuators (SEA) but with more sophisticated variable stiffness actuators (VSA) that can regulate their own mechanical stiffness. All elastic actuators demonstrate shock robustness and safe interaction with external objects to some extent, but when stiffness may be varied, it provides additional benefits, e. g., in terms of energy efficiency and task adaptability. Here, we present a novel variable stiffness actuator with a magnetic coupler as an elastic element. Magnetic transmission is contactless and thus advantageous in terms of robustness to misalignment. In addition, the friction model of the transmission becomes less complex. It also has milder stiffness characteristic than typical mechanical nonlinear springs, moreover, the stiffness curve has a maximum after which it descends. Therefore, when this maximum torque is achieved, the coupler slips, and a new pair of poles defines the equilibrium position. As a result, the risk of damage is smaller for this design solution. The design of the joint is thoroughly described, along with its mathematical model. Finally, the control system is also proposed, and simulation tests confirm the design ideas.
-
Проблема выбора решений при классическом формате описания молекулярной системы
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1573-1600Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения уравнения Шрёдингера методом Монте-Карло показали огромную неопределенностьв выборе решений. С одной стороны, оказалось возможным построить множество новых решений, с другой стороны, резко обостриласьпроб лема их связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, метода молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигурационного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим задачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы выбора), по заданному набору стационарных точек реконструироватьф ункцию потенциальной энергии (обратная задача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновесных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциальной энергии: бинарный, трехчастичный и т.д., многочастичный потенциал максимальной частичности. Обсуждается и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально многочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования многочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время. Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных точек согласуются с соответствующей формой функции потенциальной энергии.
Ключевые слова: проблема выбора решений, разметка пространства, моноатомный кластер, вычислительный эксперимент, градиентный спуск, функция потенциальной энергии, бинарный и многочастичный потенциалы.
The problem of choosing solutions in the classical format of the description of a molecular system
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.
-
Гипергеометрические функции в модели общего равновесия многосекторной экономики с монополистической конкуренцией
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 825-836В статье показано, что базовые свойства некоторых моделей монополистической конкуренции описываются с помощью семейств гипергеометрических функций. Результаты получены построением модели общего равновесия в многосекторной экономике, производящей дифференцированное благо в $n$ высокотехнологичных секторах, в которых однопродуктовые фирмы конкурируют монополистически, используя одинаковые технологии. Однородный (традиционный) сектор характеризуется совершенной конкуренцией. Работники мотивированы найти работу в высокотехнологичных секторах, так как заработная плата там выше, однако рискуют остаться безработными. Безработица сохраняется в равновесии за счет несовершенства рынка труда. Заработная плата устанавливается фирмами в высокотехнологичных секторах в результате переговоров с работниками. Предполагается, что индивиды однородны как потребители, обладая одинаковыми предпочтениями, которые задаются сепарабельной функцией полезности общего вида. В статье найдены условия, при которых общее равновесие в построенной модели существует и единственно. Условия сформулированы в терминах эластичности замещения $\mathfrak{S}$ между разновидностями дифференцированного блага, которая усреднена по всем потребителям. Найденное равновесие симметрично относительно разновидностей дифференцированного блага. Равновесные переменные представимы в виде неявных функций, свойства которых связаны с введенной авторами эластичностью $\mathfrak{S}$. Полное аналитическое описание равновесных переменных возможно для известных частных случаев функции полезности потребителей, например в случае степенных предпочтений, которые некорректно описывают отклик экономики на изменение размера рынков. Чтобы упростить возникающие неявные функции, мы вводим функции полезности, заданные двумя однопараметрическими семействами гипергеометрических функций. Одно из семейств описывает проконкурентный, а другое — антиконкурентный отклик цен на увеличение размера экономики. Изменение параметра каждого из семейств соответствует перебору всех допустимых значений эластичности $\mathfrak{S}$. В этом смысле гипергеометрические функции исчерпывают естественные функции полезности. Установлено, что с увеличением эластичности замещения между разновидностями дифференцированного блага разница между высокотехнологичным и однородным секторами стирается. Показано, что при большом размере экономики индивиды в равновесии потребляют малое количество каждого товара, как и в случае степенных препочтений. Именно это обстоятельство позволяет приблизить используемые гипергеометрические функции суммой степенных функций в окрестности равновесных значений аргумента. Таким образом, переход от степенных функций полезности к гипергеометрическим, которые аппроксимируются суммой двух степенных функций, с одной стороны, сохраняет все возможности настройки параметров, а с другой — позволяет полностью описать эффекты, связанные с изменением размера секторов экономики.
Ключевые слова: гипергеометрическая функция, монополистическая конкуренция, общая функция полезности, эластичность замещения.
Hypergeometric functions in model of General equilibrium of multisector economy with monopolistic competition
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 825-836Просмотров за год: 10.We show that basic properties of some models of monopolistic competition are described using families of hypergeometric functions. The results obtained by building a general equilibrium model in a multisector economy producing a differentiated good in $n$ high-tech sectors in which single-product firms compete monopolistically using the same technology. Homogeneous (traditional) sector is characterized by perfect competition. Workers are motivated to find a job in high-tech sectors as wages are higher there. However, they are at risk to remain unemployed. Unemployment persists in equilibrium by labor market imperfections. Wages are set by firms in high-tech sectors as a result of negotiations with employees. It is assumed that individuals are homogeneous consumers with identical preferences that are given the separable utility function of general form. In the paper the conditions are found such that the general equilibrium in the model exists and is unique. The conditions are formulated in terms of the elasticity of substitution $\mathfrak{S}$ between varieties of the differentiated good which is averaged over all consumers. The equilibrium found is symmetrical with respect to the varieties of differentiated good. The equilibrium variables can be represented as implicit functions which properties are associated elasticity $\mathfrak{S}$ introduced by the authors. A complete analytical description of the equilibrium variables is possible for known special cases of the utility function of consumers, for example, in the case of degree functions, which are incorrect to describe the response of the economy to changes in the size of the markets. To simplify the implicit function, we introduce a utility function defined by two one-parameter families of hypergeometric functions. One of the families describes the pro-competitive, and the other — anti-competitive response of prices to an increase in the size of the economy. A parameter change of each of the families corresponds to all possible values of the elasticity $\mathfrak{S}$. In this sense, the hypergeometric function exhaust natural utility function. It is established that with the increase in the elasticity of substitution between the varieties of the differentiated good the difference between the high-tech and homogeneous sectors is erased. It is shown that in the case of large size of the economy in equilibrium individuals consume a small amount of each product as in the case of degree preferences. This fact allows to approximate the hypergeometric functions by the sum of degree functions in a neighborhood of the equilibrium values of the argument. Thus, the change of degree utility functions by hypergeometric ones approximated by the sum of two power functions, on the one hand, retains all the ability to configure parameters and, on the other hand, allows to describe the effects of change the size of the sectors of the economy.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"