Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.
-
Численное моделирование динамики распределения плотности клеточной ткани с учетом влияния хемотаксиса и деформации внеклеточного матрикса
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1433-1445В настоящей работе рассматривается математическая модель динамики клеточной ткани. В первой части дается вывод модели, основные положения и постановка задачи. Во второй части итоговая система исследуется численно и приводятся результаты моделирования. Постулируется, что клеточная ткань есть трехфазная среда, которая состоит из твердого скелета (представляющего собой внеклеточный матрикс), клеток и внеклеточной жидкости. Ко всему прочему учитывается наличие питательных веществ в ткани. В основу модели положены уравнения сохранения массы с учетом обмена масс, уравнения сохранения импульса для каждой фазы, а также уравнение диффузии для питательных веществ. В уравнении, описывающем клеточную фазу, также учитывается слагаемое, описывающее химическое воздействие на ткань, которое называется хемотаксисом — движением клеток, вызванным градиентом концентрации химических веществ. Исходная система уравнений сводится к системе трех уравнений для нахождения пористости, насыщенности клеток и концентрации питательных веществ. Данные уравнения дополняются начальными и краевыми условиями. В одномерном случае в начальный момент времени задается распределение пористости, концентрации клеточной фазы и питательных веществ. На левой границе задана постоянная концентрация питательных веществ, что соответствует, например, поступлению кислорода из сосуда, а также поток концентрации клеток на ней равен нулю. На правой границе рассматриваются два типа условий: первое — условие непроницаемости правой границы, второе — условие постоянной концентрации клеточной фазы и нулевой поток концентрации питательных веществ. В обоих случаях условия для матрикса и внеклеточной жидкости одинаковы, предполагается наличие источника питательных веществ (кровеносного сосуда) на левой границе области моделирования. В результате моделирования было выявлено, что хемотаксис оказывает значительное влияние на рост ткани. При отсутствии хемотаксиса зона уплотнения распространяется на всю область моделирования, но при увеличении влияния хемотаксиса на ткань образуется область деградации, в которой концентрация клеток становится ниже начальной.
Ключевые слова: математическое моделирование, биологическая ткань, обмен масс, фильтрация, пористость. -
Ангармонические колебательные резонансы в малых водных ассоциатах
Компьютерные исследования и моделирование, 2009, т. 1, № 3, с. 321-336Просмотров за год: 1. Цитирований: 4 (РИНЦ).Выполнен численный расчет структур и колебательных спектров малых структурных фрагментов воды на основе решения молекулярного уравнения Шредингера в рамках теории функционала плотности с гибридными функционалами B3LYP, X3LYP. Обсуждаются спектральные особенности и эволюция свойств водородных связей в кластерах с увеличением размера. Определены характеристики колебательно-вращательных гамильтонианов и ангармонические резонансы Ферми и Дарлинга-Деннисона в малых водных ассоциатах. Полученные результаты могут быть использованы для расчетов воды и процессов в активных центрах ферментов, протекающих при участии молекул воды, комбинированными методами квантовой химии и молекулярной динамики.
-
Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.
Ключевые слова: ДНК, модель Холстейна, уравнение Ланжевена, алгоритм интегрирования ОДУ со случайной правой частью.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Математическое моделирование нейтронных передач в ядерных реакциях с учетом спин-орбитального взаимодействия
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 393-401На основе метода расщепления для нестационарного уравнения Шредингера предложена разностная схема численного решения нестационарной системы двух уравнений Шредингера с оператором спин-орбитального взаимодействия для двухкомпонентной спинорной волновой функции. Выполнено компьютерное моделирование эволюции волновых функций внешних нейтронов с различными проекциями полного момента на межъядерную ось и вероятности их передачи при лобовых столкновениях ядер 18O и 58Ni.
Ключевые слова: столкновения тяжелых ядер, компьютерные методы решения уравнения Шредингера.Просмотров за год: 4. -
Эффект возбуждения подкритических колебаний в стохастических системах с запаздыванием. Часть I. Регуляция экспрессии генов
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 421-438Просмотров за год: 6. Цитирований: 12 (РИНЦ).В работе рассматривается возбуждение колебаний в стохастических генных системах с запаздывающей обратной связью в процессах транскрипции. Колебания возникают из-за взаимодействия шума и запаздывания даже при значениях параметров, когда детерминистское описание предсказывает стационарное поведение. Эффект наиболее ярко проявляет себя, когда количество степеней свободы у системы невелико и роль флуктуаций становится принципиальной. Получено аналитическое решение мастер-уравнения. Приводятся результаты численного моделирования.
-
Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.
Ключевые слова: диффузия, уравнение Ланжевена, стохастические дифференциальные уравнения, корреляция, порядок сходимости.Просмотров за год: 5. Цитирований: 4 (РИНЦ). -
Методика эталонных «line-by-line» расчетов атмосферной радиации
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 553-562Просмотров за год: 4. Цитирований: 3 (РИНЦ).В работе описана методика «line-by-line» расчета тепловой радиации Земли и земной атмосферы. Расчет пространственно-углового распределения радиации производится численным интегрированием кинетического уравнения переноса излучения и уравнений для угловых моментов методом квазидиффузии. В качестве исходных данных для восстановления оптических параметров атмосферы используется банк линий молекулярного поглощения HITRAN [Rothman et al., 2009].
-
Применение метода конечных элементов для моделирования эволюционных процессов теплопроводности в облученных электронными пучками полярных диэлектриках
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 767-780Просмотров за год: 5. Цитирований: 3 (РИНЦ).Представлены результаты компьютерного моделирования нестационарных температурных полей, возникающих в полярных диэлектриках, облученных сфокусированными электронными пучками средних энергий, при исследовании с помощью методик растровой электронной микроскопии. Математическая модель основана на решении многомерного эволюционного уравнения теплопроводности численным конечноэлементным методом. Аппроксимация теплового источника проведена с учетом оценки области взаимодействия электронов с веществом на основе симуляции электронных траекторий методом Монте-Карло. Разработано программное приложение в ППП Маtlab, реализующее данную модель. Приведены геометрические интерпретации и результаты расчётов, демонстрирующие особенности температурного нагрева модельных образцов электронным зондом, при заданных параметрах эксперимента и принятой аппроксимации источника.
-
Математическое моделирование термической дистилляции воды при пленочном течении в вакууме
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 205-211Просмотров за год: 4. Цитирований: 1 (РИНЦ).Статья посвящена математическому моделированию процесса обессоливания природной воды методом термодистилляции. В статье приведены уравнения, позволяющие описать процессы пленочного течения и кипения воды, конденсации пара и поддержания вакуума. Представлен алгоритм расчета, реализованный в системе компьютерной математики MatLab и электронных таблицах Excel, и исходные данные, необходимые для расчета. Модель проверена на адекватность. Приведен расчет десятикорпусной дистилляционной установки. Результаты работы могут быть использованы при проектировании и оптимизации технологических режимов дистилляционных установок.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"