Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'prey–predator interaction':
Найдено статей: 15
  1. Башкирцева И.А., Бояршинова П.В., Рязанова Т.В., Ряшко Л.Б.
    Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660

    Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.

    Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
    Analysis of noise-induced destruction of coexistence regimes in «preypredator» population model
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

    The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

    Просмотров за год: 14. Цитирований: 4 (РИНЦ).
  2. Ха Д.Т., Цибулин В.Г.
    Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176

    Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.

    Ha D.T., Tsybulin V.G.
    Diffusion–reaction–advection equations for the predatorprey system in a heterogeneous environment
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176

    We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.

  3. Жданова О.Л., Жданов В.С., Неверова Г.П.
    Моделирование динамики планктонного сообщества с учетом токсичности фитопланктона
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1301-1323

    Предложена трехкомпонентная модельпланк тонного сообщества с дискретным временем. Сообщество представлено зоопланктоном и двумя конкурирующими за ресурсы видами фитопланктона: токсичным и нетоксичным. Модельдв ух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух видов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из видов-конкурентов доступностью внешних ресурсов. Изъятие фитопланктона за счет питания зоопланктоном описывается трофической функцией Холлинга II типа с учетом насыщения хищника. Способность фитопланктона защищаться от хищничества и избирательность питания хищника учтены в виде ограничения потребления: зоопланктон питается только нетоксичным фитопланктоном.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего сосуществованию двух видов фитопланктона и зоопланктона, может происходитьч ерез каскад бифуркаций удвоения периода, также возникает бифуркация Неймарка – Сакера, ведущая к возникновению квазипериодических колебаний. Вариация внутрипопуляционных параметров фито- или зоопланктона может приводитьк выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. В областях мультистабильности возможна кардинальная смена как динамического режима, так и состава сообщества за счет изменения начальных условий или же текущего состава сообщества. Предложенная в данной работе трехкомпонентная модель динамики сообщества с дискретным временем, являясь достаточно простой, позволяет получитьадекв атную динамику взаимодействующих видов: возникают динамические режимы, отражающие основные свойства экспериментальной динамики. Так, наблюдается динамика характерная для модели «хищник–жертва» без учета эволюции — с отставанием динамики хищника от жертвы примерно на четвертьперио да. Рассмотрение генетической неоднородности фитопланктона, даже в случае выделения всего двух генетически различных форм: токсичного и нетоксичного, позволяет наблюдатьв модели как длиннопериодические противофазные циклы хищника и жертвы, так и скрытые циклы, при которых плотностьч исленности жертв остается практически постоянной, а плотность численности хищников колеблется, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие видов.

    Zhdanova O.L., Zhdanov V.S., Neverova G.P.
    Modeling the dynamics of plankton community considering phytoplankton toxicity
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1301-1323

    We propose a three-component discrete-time model of the phytoplankton-zooplankton community, in which toxic and non-toxic species of phytoplankton compete for resources. The use of the Holling functional response of type II allows us to describe an interaction between zooplankton and phytoplankton. With the Ricker competition model, we describe the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.). Many phytoplankton species, including diatom algae, are known not to release toxins if they are not damaged. Zooplankton pressure on phytoplankton decreases in the presence of toxic substances. For example, Copepods are selective in their food choices and avoid consuming toxin-producing phytoplankton. Therefore, in our model, zooplankton (predator) consumes only non-toxic phytoplankton species being prey, and toxic species phytoplankton only competes with non-toxic for resources.

    We study analytically and numerically the proposed model. Dynamic mode maps allow us to investigate stability domains of fixed points, bifurcations, and the evolution of the community. Stability loss of fixed points is shown to occur only through a cascade of period-doubling bifurcations. The Neimark – Sacker scenario leading to the appearance of quasiperiodic oscillations is found to realize as well. Changes in intrapopulation parameters of phytoplankton or zooplankton can lead to abrupt transitions from regular to quasi-periodic dynamics (according to the Neimark – Sacker scenario) and further to cycles with a short period or even stationary dynamics. In the multistability areas, an initial condition variation with the unchanged values of all model parameters can shift the current dynamic mode or/and community composition.

    The proposed discrete-time model of community is quite simple and reveals dynamics of interacting species that coincide with features of experimental dynamics. In particular, the system shows behavior like in prey-predator models without evolution: the predator fluctuations lag behind those of prey by about a quarter of the period. Considering the phytoplankton genetic heterogeneity, in the simplest case of two genetically different forms: toxic and non-toxic ones, allows the model to demonstrate both long-period antiphase oscillations of predator and prey and cryptic cycles. During the cryptic cycle, the prey density remains almost constant with fluctuating predators, which corresponds to the influence of rapid evolution masking the trophic interaction.

  4. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “preypredator” community. The key idea and approaches used in current mathematical biology to model a “preypredator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Просмотров за год: 40. Цитирований: 2 (РИНЦ).
  5. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

    Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two preypredator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  6. Рассматривается вертикально-распределенная трехкомпонентная модель морской экосистемы. Состояние планктонного сообщества с учетом питательных веществ анализируется в условиях активных перемещений зоопланктона в вертикальном столбе воды. Аналитически получены условия ДС-неустойчивости системы в окрестности пространственно-однородного равновесия. Численно определены области параметров, при которых пространственнооднородное равновесие устойчиво к небольшим пространственно-неоднородным возмущениям, неустойчиво по Тьюрингу и колебательно неустойчиво. Исследовано влияние параметров, определяющих биологические характеристики зоопланктона и пространственные перемещения планктона, на возможность образования пространственных структур. Показано, что при малой скорости потребления фитопланктона на пространственную неустойчивость существенно влияет убыль зоопланктона, а при больших значениях этого параметра имеют значение перемешивание фитопланктона и пространственные перемещения зоопланктона.

    Giricheva E.E.
    Modeling of plankton community state with density-dependent death and spatial activity of zooplankton
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 549-560

    A vertically distributed three-component model of marine ecosystem is considered. State of the plankton community with nutrients is analyzed under the active movement of zooplankton in a vertical column of water. The necessary conditions of the Turing instability in the vicinity of the spatially homogeneous equilibrium are obtained. Stability of the spatially homogeneous equilibrium, the Turing instability and the oscillatory instability are examined depending on the biological characteristics of zooplankton and spatial movement of plankton. It is shown that at low values of zooplankton grazing rate and intratrophic interaction rate the system is Turing instable when the taxis rate is low. Stabilization occurs either through increased decline of zooplankton either by increasing the phytoplankton diffusion. With the increasing rate of consumption of phytoplankton range of parameters that determine the stability is reduced. A type of instability depends on the phytoplankton diffusion. For large values of diffusion oscillatory instability is observed, with a decrease in the phytoplankton diffusion zone of Turing instability is increases. In general, if zooplankton grazing rate is faster than phytoplankton growth rate the spatially homogeneous equilibrium is Turing instable or oscillatory instable. Stability is observed only at high speeds of zooplankton departure or its active movements. With the increase in zooplankton search activity spatial distribution of populations becomes more uniform, increasing the rate of diffusion leads to non-uniform spatial distribution. However, under diffusion the total number of the population is stabilized when the zooplankton grazing rate above the rate of phytoplankton growth. In general, at low rate of phytoplankton consumption the spatial structures formation is possible at low rates of zooplankton decline and diffusion of all the plankton community. With the increase in phytoplankton predation rate the phytoplankton diffusion and zooplankton spatial movement has essential effect on the spatial instability.

    Просмотров за год: 6.
  7. Епифанов А.В., Цибулин В.Г.
    О динамике косимметричных систем хищников и жертв
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813

    Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.

    Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.

    Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.

    Epifanov A.V., Tsybulin V.G.
    Regarding the dynamics of cosymmetric predatorprey systems
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 799-813

    To study nonlinear effects of biological species interactions numerical-analytical approach is being developed. The approach is based on the cosymmetry theory accounting for the phenomenon of the emergence of a continuous family of solutions to differential equations where each solution can be obtained from the appropriate initial state. In problems of mathematical ecology the onset of cosymmetry is usually connected with a number of relationships between the parameters of the system. When the relationships collapse families vanish, we get a finite number of isolated solutions instead of a continuum of solutions and transient process can be long-term, dynamics taking place in a neighborhood of a family that has vanished due to cosymmetry collapse.

    We consider a model for spatiotemporal competition of predators or prey with an account for directed migration, Holling type II functional response and nonlinear prey growth function permitting Alley effect. We found out the conditions on system parameters under which there is linear with respect to population densities cosymmetry. It is demonstated that cosymmetry exists for any resource function in case of heterogeneous habitat. Numerical experiment in MATLAB is applied to compute steady states and oscillatory regimes in case of spatial heterogeneity.

    The dynamics of three population interactions (two predators and a prey, two prey and a predator) are considered. The onset of families of stationary distributions and limit cycle branching out of equlibria of a family that lose stability are investigated in case of homogeneous habitat. The study of the system for two prey and a predator gave a wonderful result of species coexistence. We have found out parameter regions where three families of stable solutions can be realized: coexistence of two prey in absence of a predator, stationary and oscillatory distributions of three coexisting species. Cosymmetry collapse is analyzed and long-term transient dynamics leading to solutions with the exclusion of one of prey or extinction of a predator is established in the numerical experiment.

    Просмотров за год: 12. Цитирований: 3 (РИНЦ).
  8. Абрамова Е.П., Рязанова Т.В.
    Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531

    В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.

    Abramova E.P., Ryazanova T.V.
    Dynamic regimes of the stochastic “preypredatory” model with competition and saturation
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531

    We consider “predatorprey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.

    Просмотров за год: 28.
  9. Неверова Г.П., Жданова О.Л., Колбина Е.А., Абакумов А.И.
    Планктонное сообщество: влияние зоопланктона на динамику фитопланктона
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 751-768

    Методами математического моделирования оценивается спектр влияния зоопланктона на динамику обилия фитопланктона. Предложена трехкомпонентная модель сообщества «фитопланктон–зоопланктон» с дискретным временем, рассматривающая неоднородность зоопланктона по стадии развития и типу питания, учтено наличие каннибализма в сообществе зоопланктона, в процессе которого зрелые особи некоторых его видов поедают ювенильных. Процессы взаимодействия зоо- и фитопланктона в явном виде учтены в выживаемостях на ранних стадиях жизненного цикла зоопланктона; а также явно рассматривается убыль фитопланктона в результате выедания его биомассы зоопланктоном; используется трофическая функция Холлинга II типа для описания насыщения при потреблении биомассы. Динамика фитопланктонного сообщества представлена уравнением Рикера, что позволяет неявно учитывать ограничение роста биомассы фитопланктона доступностью внешних ресурсов (минерального питания, кислорода, освещенности и т. п.).

    Проанализированы сценарии перехода от стационарной динамики к колебаниям численности фито- и зоопланктона при различных значениях внутрипопуляционных параметров, определяющих характер динамики каждого из составляющих сообщество видов, и параметров их взаимодействия. Основное внимание уделено изучению огромного разнообразия сложной динамики сообщества. В рамках используемой в работе модели, описывающей динамику фитопланктона в отсутствие межвидового взаимодействия, происходит усложнение его динамики через серию бифуркаций удвоения периода. При этом с появлением зоопланктона каскад бифуркаций удвоения периода у фитопланктона и сообщества в целом реализуется раньше (при более низких скоростях воспроизводства клеток фитопланктона), чем в случае, когда фитопланктон развивается изолированно. При этом вариация уровня каннибализма зоопланктона способна значительно изменить как существующий в сообществе режим динамики, так и его бифуркацию; при определенной структуре пищевых отношений зоопланктона возможна реализация сценария Неймарка–Сакера в сообществе. Учитывая, что уровень каннибализма зоопланктона может меняться из-за естественных процессов созревания особей отдельных видов и достижения ими плотоядной стадии, можно ожидать выраженные изменения динамического режима в сообществе: резкие переходы от регулярной к квазипериодической динамике (по сценарию Неймарка–Сакера) и далее к точным циклам с небольшим периодом (обратная реализация каскада удвоения периода).

    Neverova G.P., Zhdanova O.L., Kolbina E.A., Abakumov A.I.
    A plankton community: a zooplankton effect in phytoplankton dynamics
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 751-768

    The paper uses methods of mathematical modeling to estimate a zooplankton influence on the dynamics of phytoplankton abundance. We propose a three-component model of the “phytoplankton–zooplankton” community with discrete time, considering a heterogeneity of zooplankton according to the developmental stage and type of feeding; the model takes into account cannibalism in zooplankton community, during which mature individuals of some of its species consume juvenile ones. Survival rates at the early stages of zooplankton life cycle depend explicitly on the interaction between zooplankton and phytoplankton. Loss of phytoplankton biomass because of zooplankton consumption is explicitly considered. We use the Holling functional response of type II to describe saturation during biomass consumption. The dynamics of the phytoplankton community is represented by the Ricker model, which allows to take into account the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.) implicitly.

    The study analyzed scenarios of the transition from stationary dynamics to fluctuations in the size of phytoand zooplankton for various values of intrapopulation parameters determining the nature of the dynamics of the species constituting the community, and the parameters of their interaction. The focus is on exploring the complex modes of community dynamics. In the framework of the model used for describing dynamics of phytoplankton in the absence of interspecific interaction, phytoplankton dynamics undergoes a series of perioddoubling bifurcations. At the same time, with zooplankton appearance, the cascade of period-doubling bifurcations in phytoplankton and the community as a whole is realized earlier (at lower reproduction rates of phytoplankton cells) than in the case when phytoplankton develops in isolation. Furthermore, the variation in the cannibalism level in zooplankton can significantly change both the existing dynamics in the community and its bifurcation; e.g., with a certain structure of zooplankton food relationships the realization of Neimark–Sacker bifurcation scenario in the community is possible. Considering the cannibalism level in zooplankton can change due to the natural maturation processes and achievement of the carnivorous stage by some individuals, one can expect pronounced changes in the dynamic mode of the community, i.e. abrupt transitions from regular to quasiperiodic dynamics (according to Neimark–Sacker scenario) and further cycles with a short period (the implementation of period halving bifurcation).

    Просмотров за год: 3.
  10. Цыганов М.А., Бикташев В.Н.
    Солитонное и полусолитонное взаимодействие волн в возбудимых системах с нелинейной кросс-диффузией
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 109-115

    Исследованы свойства нелинейных волн в математической модели «хищник-жертва» с таксисом. Нами показано, что для таких систем с положительным и отрицательным таксисом существует большая параметрическая область, для которой характерно квазисолитонное взаимодействие волн: сталкивающиеся волны проходят/отражаются друг сквозь друга, а также отражаются от непроницаемых границ. В численных экспериментах мы также демонстрируем новое волновое явление — полусолитонное вазимодействие: при столкновении двух волн одна аннигилирует, а другая продолжает распространение. Мы показали, что этот эффект зависит от «возраста» или, эквивалентно, «ширины» сталкивающихся волн.

    Tsyganov M.A., Biktashev V.N.
    Soliton and half-soliton interaction of solitary waves in excitable media with non-linear cross-diffusion
    Computer Research and Modeling, 2009, v. 1, no. 1, pp. 109-115

    We have studied properties of non-linear waves in a mathematical model of a predatorprey system with taxis. We demonstrate that, for systems with negative and positive taxis there typically exists a large region in the parameter space, where the waves demonstrate quasi-soliton interaction; colliding waves can penetrate through each other, and waves can also reflect from impermeable boundaries. In this paper, we use numerical simulations to demonstrate also a new wave phenomenon — a half-soliton interaction of waves, when of two colliding waves, one annihilates and the other continues to propagate. We show that this effect depends on the «ages» or, equivalently, «widths» of the colliding waves.

    Просмотров за год: 3.
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.