Текущий выпуск Номер 5, 2020 Том 12
Результаты поиска по 'функция стохастической чувствительности':
Найдено статей: 7
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Просмотров за год: 3.
  2. Башкирцева И.А., Бояршинова П.В., Рязанова Т.В., Ряшко Л.Б.
    Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660

    Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.

    Просмотров за год: 14. Цитирований: 4 (РИНЦ).
  3. Башкирцева И.А., Екатеринчук Е.Д., Рязанова Т.В., Сысолятина А.А.
    Математическое моделирование стохастических равновесий и бизнес-циклов модели Гудвина
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 107-118

    В работе рассматривается модель экономической динамики Гудвина, находящаяся под воздействием случайных возмущений. Проведен полный параметрический анализ равновесий и циклов детерминированной системы. Исследованы вероятностные свойства аттракторов стохастической системы с использованием техники функций стохастической чувствительности и метода прямого численного моделирования. Обсуждается явление генерации стохастических бизнес-циклов в зоне, где исходная детерминированная модель имеет лишь устойчивые равновесия.

    Просмотров за год: 5. Цитирований: 4 (РИНЦ).
  4. Ряшко Л.Б., Слепухина Е.С.
    Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468

    Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.

    Просмотров за год: 11.
  5. Екатеринчук Е.Д., Ряшко Л.Б.
    Анализ стохастических аттракторов квадратичной дискретной популяционной модели с запаздыванием
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 145-157

    В работе рассматривается квадратичная дискретная модель популяционной динамики с запаздыванием под воздействием случайных возмущений. Анализ стохастических аттракторов модели проводится с помощью методов прямого численного моделирования и техники функций стохастической чувствительности. Показана деформация вероятностных распределений случайных состояний вокруг устойчивых равновесий и циклов при изменении параметров. Продемонстрировано явление индуцированных шумом переходов в зоне дискретных циклов.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  6. Ряшко Л.Б., Слепухина Е.С.
    Анализ индуцированных шумом пачечных колебаний в двумерной модели Хиндмарш–Розе
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 605-619

    В работе исследуется стохастическая динамика двумерной модели Хиндмарш–Розе в параметрической зоне сосуществования устойчивых равновесий и предельных циклов. Изучается явление индуцированных шумом переходов между аттракторами. Под воздействием случайных возмущений равновесные и периодические режимы объединяются в пачечные: система демонстрирует чередование малых колебаний около равновесия с осцилляциями больших амплитуд. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности и предлагается метод оценки критических значений интенсивности шума.

    Просмотров за год: 1.
  7. Абрамова Е.П., Рязанова Т.В.
    Динамические режимы стохастической модели «хищник –жертва» с учетом конкуренции и насыщения
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 515-531

    В работе рассматривается модель «хищник – жертва» с учетом конкуренции жертв, хищников за отличные от жертвы ресурсы и их взаимодействия, описываемого трофической функцией Холлинга второго типа. Проводится анализ аттракторов модели в зависимости от коэффициента конкуренции хищников. В детерминированном случае данная модель демонстрирует сложное поведение, связанное с локальными (Андронова–Хопфа и седлоузловая) и глобальной (рождение цикла из петли сепаратрисы) бифуркациями. Важной особенностью этой модели является исчезновение устойчивого цикла вследствие седлоузловой бифуркации. В силу наличия внутривидовой конкуренции в обеих популяциях возникают параметрические зоны моно- и бистабильности. В зоне параметров бистабильности система имеет сосуществующие аттракторы: два равновесия или цикл и равновесие. Проводится исследование геометрического расположения аттракторов и сепаратрис, разделяющих их бассейны притяжения. Понимание взаимного расположения аттракторов и сепаратрис, в совокупности с чувствительностью аттракторов к случайным воздействиям, является важной составляющей в изучении стохастических явлений. В рассматриваемой модели сочетание нелинейности и случайных возмущений приводит к появлению новых феноменов, не имеющих аналогов в детерминированном случае, таких как индуцированные шумом переходы через сепаратрису, стохастическая возбудимость и генерация осцилляций смешанных мод. Для параметрического исследования этих феноменов используются аппарат функции стохастической чувствительности и метод доверительных областей, эффективность которых проверялась на широком круге моделей нелинейной динамики. В зонах бистабильности проводится исследование деформации равновесного или осцилляционного режимов под действием шума. Геометрическим критерием возникновения такого рода качественных изменений служит пересечение доверительных областей с сепаратрисой детерминированной модели. В зоне моностабильности изучаются феномены резкого изменения численности и вымирания одной или обеих популяций при малых изменениях внешних условий. С помощью аппарата доверительных областей решается задача оценки близости стохастической популяции к опасным границам, при достижении которых сосуществование популяций разрушается и наблюдается их вымирание.

    Просмотров за год: 28.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus