Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'networks':
Найдено статей: 119
  1. При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.

    When modeling turbulent flows in practical applications, it is often necessary to carry out a series of calculations of bodies of similar topology. For example, bodies that differ in the shape of the fairing. The use of convolutional neural networks allows to reduce the number of calculations in a series, restoring some of them based on calculations already performed. The paper proposes a method that allows to apply a convolutional neural network regardless of the method of constructing a computational mesh. To do this, the flow field is reinterpolated to a uniform mesh along with the body itself. The geometry of the body is set using the signed distance function and masking. The restoration of the flow field based on part of the calculations for similar geometries is carried out using a neural network of the UNet type with a spatial attention mechanism. The resolution of the nearwall region, which is a critical condition for turbulent modeling, is based on the equations obtained in the nearwall domain decomposition method.

    A demonstration of the method is given for the case of a flow around a rounded plate by a turbulent air flow with different rounding at fixed parameters of the incoming flow with the Reynolds number $Re = 10^5$ and the Mach number $M = 0.15$. Since flows with such parameters of the incoming flow can be considered incompressible, only the velocity components are studied directly. The flow fields, velocity and friction profiles obtained by the surrogate model and numerically are compared. The analysis is carried out both on the plate and on the rounding. The simulation results confirm the prospects of the proposed approach. In particular, it was shown that even if the model is used at the maximum permissible limits of its applicability, friction can be obtained with an accuracy of up to 90%. The work also analyzes the constructed architecture of the neural network. The obtained surrogate model is compared with alternative models based on a variational autoencoder or the principal component analysis using radial basis functions. Based on this comparison, the advantages of the proposed method are demonstrated.

  2. Кольцов Ю.В., Бобошко Е.В.
    Сравнительный анализ методов оптимизации для решения задачи интервальной оценки потерь электроэнергии
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 231-239

    Данная работа посвящена сравнительному анализу оптимизационных методов и алгоритмов для проведения интервальной оценки технических потерь электроэнергии в распределительных сетях напряжением 6–20 кВ. Задача интервальной оценки потерь сформулирована в виде задачи многомерной условной минимизации/максимизации с неявной целевой функцией. Рассмотрен ряд методов численной оптимизации первого и нулевого порядков, с целью определения наиболее подходящего для решения рассмотренной проблемы. Таким является алгоритм BOBYQA, в котором целевая функция заменяется ее квадратичной аппроксимацией в пределах доверительной области.

    Koltsov Y.V., Boboshko E.V.
    Comparative analysis of optimization methods for electrical energy losses interval evaluation problem
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 231-239

    This article is dedicated to a comparison analysis of optimization methods, in order to perform an interval estimation of electrical energy technical losses in distribution networks of voltage 6–20 kV. The issue of interval evaluation is represented as a multi-dimensional conditional minimization/maximization problem with implicit target function. A number of numerical optimization methods of first and zero orders is observed, with the aim of determining the most suitable for the problem of interest. The desired algorithm is BOBYQA, in which the target function is replaced with its quadratic approximation in some trusted region.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  3. Туманян А.Г., Барцев С.И.
    Простейшая поведенческая модель формирования импринта
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 793-802

    Формирование адекватных поведенческих паттернов в условиях неизвестного окружения осуществляется через поисковое поведение. При этом быстрейшее формирование приемлемого паттерна представляется более предпочтительным, чем долгая выработка совершенного паттерна, через многократное воспроизведение обучающей ситуации. В экстремальных ситуациях наблюдается явление импринтирования — мгновенного запечатления поведенческого паттерна, обеспечившего выживание особи. В данной работе предложены гипотеза и модель импринта, когда обученная по единственному успешному поведенческому паттерну нейронная сеть анимата демонстрирует эффективное функционирование. Реалистичность модели оценена путем проверки устойчивости воспроизведения поведенческого паттерна к возмущениям ситуации запуска импринта.

    Tumanyan A.G., Bartsev S.I.
    Simple behavioral model of imprint formation
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 793-802

    Formation of adequate behavioral patterns in condition of the unknown environment carried out through exploratory behavior. At the same time the rapid formation of an acceptable pattern is more preferable than a long elaboration perfect pattern through repeat play learning situation. In extreme situations, phenomenon of imprinting is observed — instant imprinting of behavior pattern, which ensure the survival of individuals. In this paper we propose a hypothesis and imprint model when trained on a single successful pattern of virtual robot's neural network demonstrates the effective functioning. Realism of the model is estimated by checking the stability of playback behavior pattern to perturbations situation imprint run.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  4. Киселев М.В.
    Исследование двухнейронных ячеек памяти в импульсных нейронных сетях
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 401-416

    В данной работе изучаются механизмы рабочей памяти в импульсных нейронных сетях, состоящих из нейронов – интеграторов с утечкой и адаптивным порогом при включенной синаптической пластичности. Исследовались относительно небольшие сети, включающие тысячи нейронов. Рабочая память трактовалась как способность нейронной сети удерживать в своем состоянии информацию о предъявленных ей в недавнем прошлом стимулах, так что по этой информации можно было бы определить, какой стимул был предъявлен. Под состоянием сети в данном исследовании понимаются только характеристики активности сети, не включая внутреннего состояния ее нейронов. Для выявления нейронных структур, которые могли бы выполнять функцию носителей рабочей памяти, была проведена оптимизация параметров и структуры импульсной нейронной сети с помощью генетического алгоритма. Были обнаружены два типа таких нейронных структур: пары нейронов, соединенных связями с большими весами, и длинные древовидные нейронные цепи. Было показано, что качественная рабочая память может быть реализована только с помощью сильно связанных нейронных пар. В работе исследованы свойства таких ячеек памяти и образуемых ими структур. Показано, что характеристики изучаемых двухнейронных ячеек памяти легко задаются параметрами входящих в них нейронов и межнейронных связей. Выявлен интересный эффект повышения селективности пары нейронов за счет несовпадения наборов их афферентных связей и взаимной активации. Продемонстрировано также, что ансамбли таких структур могут быть использованы для реализации обучения без учителя распознаванию паттернов во входном сигнале.

    Kiselev M.V.
    Exploration of 2-neuron memory units in spiking neural networks
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 401-416

    Working memory mechanisms in spiking neural networks consisting of leaky integrate-and-fire neurons with adaptive threshold and synaptic plasticity are studied in this work. Moderate size networks including thousands of neurons were explored. Working memory is a network ability to keep in its state the information about recent stimuli presented to the network such that this information is sufficient to determine which stimulus has been presented. In this study, network state is defined as the current characteristics of network activity only — without internal state of its neurons. In order to discover the neuronal structures serving as a possible substrate of the memory mechanism, optimization of the network parameters and structure using genetic algorithm was carried out. Two kinds of neuronal structures with the desired properties were found. These are neuron pairs mutually connected by strong synaptic links and long tree-like neuronal ensembles. It was shown that only the neuron pairs are suitable for efficient and reliable implementation of working memory. Properties of such memory units and structures formed by them are explored in the present study. It is shown that characteristics of the studied two-neuron memory units can be set easily by the respective choice of the parameters of its neurons and synaptic connections. Besides that, this work demonstrates that ensembles of these structures can provide the network with capability of unsupervised learning to recognize patterns in the input signal.

  5. Сабиров А.И., Катасёв А.С., Дагаева М.В.
    Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435

    В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.

    Sabirov A.I., Katasev A.S., Dagaeva M.V.
    A neural network model for traffic signs recognition in intelligent transport systems
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435

    This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.

  6. Куракин П.В.
    Technoscape: мультиагентная модель эволюции сети городов, объединенных торгово-производственными связями
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 163-178

    В работе предлагается многоагентная локально-нелокальная модель образования глобальной структуры городов с условным названием Technoscape. Technoscape можно в определенной степени считать также моделью возникновения глобальной экономики. Текущий вариант модели рассматривает очень простые способы поведения и взаимодействия агентов, при этом модель демонстрирует весьма интересные пространственно-временные паттерны.

    Под локальностью и нелокальностью понимаются пространственные характеристики способа взаимодействия агентов друг с другом и с географическим пространством, на котором разворачивается эволюция системы. Под агентом понимается условный ремесленник, семья или промышленно-торговая фирма, причем не делается разницы между производством и торговлей. Агенты размещены на ограниченном двумерном пространстве, разбитом на квадратные ячейки, и перемещаются по нему. Модель демонстрирует процессы высокой концентрации агентов в выделенных ячейках, что трактуется как образование Technoscape: мультиагентная модель эволюции «сетигородов». Происходит постоянный процесс как возникновения, так и исчезновения городов. Агенты живут Technoscape: мультиагентная модель эволюции «сетивечно», не мутируют и не эволюционируют, хотя это перспективное направление развития модели.

    Система Technoscape демонстрирует качественно новый вид самоорганизации. Частично эта самоорганизация напоминает поведение модели сегрегации по Томасу Шеллингу, однако эволюционные правила Technoscape существенно иные. В модели Шеллинга существуют лавины, но без добавления новых агентов в системе существуют простые равновесия, в то время как в Technoscape не существует даже строгих равновесий, в лучшем случае квазиравновесные, медленно изменяющиеся состояния.

    Нетривиальный результат в модели Technoscape, также контрастирующий с моделью сегрегации Шеллинга, состоит в том, что агенты проявляют склонность к концентрации в больших городах даже при полном игнорировании локальных связей.

    При этом, хотя агенты и стремятся в большие города, размер города не является гарантией стабильности. По ходу эволюции системы происходит постоянное Technoscape: мультиагентная модель эволюции «сетипереманивание» жителей в другие города такого же класса.

    Kurakin P.V.
    Technoscape: multi-agent model for evolution of network of cities, joined by production and trade links
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 163-178

    The paper presents agent-based model for city formation named Technoscape which is both local and nonlocal. Technoscape can, to a certain degree, be also assumed as a model for emergence of global economy. The current version of the model implements very simple way of agents’ behavior and interaction, still the model provides rather interesting spatio-temporal patterns.

    Locality and non-locality mean here the spatial features of the way the agents interact with each other and with geographical space upon which the evolution takes place. Technoscape agent is some conventional artisan, family, or а producing and trading firm, while there is no difference between production and trade. Agents are located upon and move through bounded two-dimensional space divided into square cells. The model demonstrates processes of agents’ concentration in a small set of cells, which is interpreted as «city» formation. Agents are immortal, they don’t mutate and evolve, though this is interesting perspective for the evolution of the model itself.

    Technoscape provides some distinctively new type of self-organization. Partially, this type of selforganization resembles the behavior of segregation model by Thomas Shelling, still that model has evolution rules substantially different from Technoscape. In Shelling model there exist avalanches still simple equilibria exist if no new agents are added to the game board, while in Technoscape no such equilibria exist. At best, we can observe quasi-equilibrium, slowly changing global states.

    One non-trivial phenomenon Technoscape exhibits, which also contrasts to Shelling segregation model, is the ability of agents to concentrate in local cells (interpreted as cities) even explicitly and totally ignoring local interactions, using non-local interactions only.

    At the same time, while the agents tend to concentrate in large one-cell cities, large scale of such cities does not guarantee them from decay: there always exists a process of «enticement» of agents and their flow to new cities.

  7. Деев А.А., Кальщиков А.А.
    Когерентный приемопередатчик с постоянной задержкой для синхронной оптоволоконной сети
    Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 141-155

    В статье предлагается реализация когерентного приемопередатчика с постоянной задержкой и возможностью свободно варьируемой сетки тактовых частот, используемой для тактирования периферийных ЦАП и АЦП, задач синхронизации устройств и передачи данных. Выбор необходимой сетки тактовых частот напрямую влияет на скорость передачи данных в сети, однако позволяет гибко настроить сеть для передачи тактовых сигналов и генерации синхроимпульсов с субнаносекундной точностью на всех устройствах в сети. Предложен метод повышения точности синхронизации до десятых долей наносекунды за счет использования цифровых фазовых детекторов и системы фазовой автоподстройки частоты (ФАПЧ) на ведомом устройстве. Использование высокоскоростных волоконно-оптических линий связи (ВОЛС) для задач синхронизации шкал времени, позволяет параллельно синхронизации производить обмен командами управления и сигнальными данными. Для упрощения и удешевления устройств синхронной сети приемопередатчиков предлагается использовать тактовый сигнал, восстановленный из сериализованных данных, и прошедший фильтрацию фазовых шумов, для формирования в системе ФАПЧ тактовых сигналов периферийных устройств, таких как ЦАП и АЦП, а также сигналов гетеродина. Представлены результаты многократных тестов синхронизации в предложенной синхронной сети.

    Deev A.A., Kalshchikov A.A.
    Coherent constant delay transceiver for a synchronous fiber optic network
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 141-155

    This paper proposes the implementation of a coherent transceiver with a constant delay and the ability to select any clock frequency grid used for clocking peripheral DACs and ADCs, tasks of device synchronization and data transmission. The choice of the required clock frequency grid directly affects the data transfer rate in the network, however, it allows one to flexibly configure the network for the tasks of transmitting clock signals and subnanosecond generation of sync signals on all devices in the network. A method for increasing the synchronization accuracy to tenths of nanoseconds by using digital phase detectors and a Phase Locked Loop (PLL) system on the slave device is proposed. The use of high-speed fiber-optic communication lines (FOCL) for synchronization tasks allows simultaneously exchanging control commands and signaling data. To simplify and reduce the cost of devices of a synchronous network of transceivers, it is proposed to use a clock signal restored from a data transmission line to filter phase noise and form a frequency grid in the PLL system for heterodyne signals and clock peripheral devices, including DAC and ADC. The results of multiple synchronization tests in the proposed synchronous network are presented.

  8. Создание компьютерного лабораторного стенда, позволяющего получать достоверные характеристики, которые могут быть приняты за действительные, с учетом погрешностей и шумов (в чем заключается главная отличительная черта вычислительного эксперимента от модельных исследований), является одной из основных проблем настоящей работы. В ней рассматривается следующая задача: имеется прямоугольный волновод в одномодовом режиме, на широкой стенке которого прорезано сквозное технологическое отверстие, через которое в полость линии передачи помещается образец для исследования. Алгоритм восстановления следующий: в лаборатории производится измерение параметров цепи (S11 и/или S21) в линии передачи с образцом. В компьютерной модели лабораторного стенда воссоздается геометрия образца и запускается итерационный процесс оптимизации (или свипирования) электрофи- зических параметров образца, маской которого являются экспериментальные данные, а критерием остановки — интерпретационная оценка близости к ним. Важно отметить, что разрабатываемая компьютерная модель, одновременно с кажущейся простотой, изначально является плохо обусловленной. Для постановки вычислительного эксперимента используется среда моделирования Comsol. Результаты проведенного вычислительного эксперимента с хорошей степенью точности совпали с результатами лабораторных исследований. Таким образом, экспериментальная верификация проведена для целого ряда значимых компонент, как компьютерной модели в частности, так и алгоритма восстановления параметров объекта в общем. Важно отметить, что разработанная и описанная в настоящей работе компьютерная модель может быть эффективно использована для вычислительного эксперимента по восстановлению полных диэлектрических параметров образца сложной геометрии. Обнаруженными могут также являться эффекты слабой бианизотропии, включая киральность, гиротропность и невзаимность материала. Полученная модель по определению является неполной, однако ее полнота является наивысшей из рассматриваемых вариантов, одновременно с этим результирующая модель оказывается хорошо обусловлена. Особое внимание в данной работе уделено моделированию коаксиально-волноводного перехода, показано, что применение дискретно-элементного подхода предпочтительнее, чем непосредственное моделирование геометрии СВЧ-узла.

    The creation of a virtual laboratory stand that allows one to obtain reliable characteristics that can be proven as actual, taking into account errors and noises (which is the main distinguishing feature of a computational experiment from model studies) is one of the main problems of this work. It considers the following task: there is a rectangular waveguide in the single operating mode, on the wide wall of which a technological hole is cut, through which a sample for research is placed into the cavity of the transmission line. The recovery algorithm is as follows: the laboratory measures the network parameters (S11 and/or S21) in the transmission line with the sample. In the computer model of the laboratory stand, the sample geometry is reconstructed and an iterative process of optimization (or sweeping) of the electrophysical parameters is started, the mask of this process is the experimental data, and the stop criterion is the interpretive estimate of proximity (or residual). It is important to note that the developed computer model, along with its apparent simplicity, is initially ill-conditioned. To set up a computational experiment, the Comsol modeling environment is used. The results of the computational experiment with a good degree of accuracy coincided with the results of laboratory studies. Thus, experimental verification was carried out for several significant components, both the computer model in particular and the algorithm for restoring the target parameters in general. It is important to note that the computer model developed and described in this work may be effectively used for a computational experiment to restore the full dielectric parameters of a complex geometry target. Weak bianisotropy effects can also be detected, including chirality, gyrotropy, and material nonreciprocity. The resulting model is, by definition, incomplete, but its completeness is the highest of the considered options, while at the same time, the resulting model is well conditioned. Particular attention in this work is paid to the modeling of a coaxial-waveguide transition, it is shown that the use of a discrete-element approach is preferable to the direct modeling of the geometry of a microwave device.

  9. Саленек И.А., Селиверстов Я.А., Селиверстов С.А., Софронова Е.А.
    Повышение качества генерации маршрутов в SUMO на основе данных с детекторов с использованием обучения с подкреплением
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 137-146

    Данная работа предлагает новый подход к построению высокоточных маршрутов на основе данных от транспортных детекторов в пакете моделирования трафика SUMO. Существующие инструменты, такие как flowrouter и routeSampler, имеют ряд недостатков, таких как отсутствие взаимодействия с сетью в процессе построения маршрутов. Наш rlRouter использует мультиагентное обучение с подкреплением (MARL), где агенты — это входящие полосы движения, а окружающая среда — дорожная сеть. Добавляя в сеть транспортные средства с определенными маршрутами, агенты получают вознаграждение за сопоставление данных с детекторами транспорта. В качестве алгоритма мультиагентного обучения с подкреплением использовался DQN с разделением параметров между агентами и LSTM-слоем для обработки последовательных данных.

    Поскольку rlRouter обучается внутри симуляции SUMO, он может лучше восстанавливать маршруты, принимая во внимание взаимодействие транспортных средств внутри сети друг с другом и с сетевой инфраструктурой. Мы смоделировали различные дорожные ситуации на трех разных перекрестках, чтобы сравнить производительность маршрутизаторов SUMO с rlRouter. Мы использовали среднюю абсолютную ошибку (MAE) в качестве меры отклонения кумулятивных данных детекторов и от данных маршрутов. rlRouter позволил добиться высокого соответствия данным с детекторов. Мы также обнаружили, что, максимизируя вознаграждение за соответствие детекторам, результирующие маршруты также становятся ближе к реальным. Несмотря на то, что маршруты, восстановленные с помощью rlRouter, превосходят маршруты, полученные с помощью инструментов SUMO, они не полностью соответствуют реальным из-за естественных ограничений петлевых детекторов. Чтобы обеспечить более правдоподобные маршруты, необходимо оборудовать перекрестки другими видами транспортных счетчиков, например, детекторами-камерами.

    Salenek I.A., Seliverstov Y.A., Seliverstov S.A., Sofronova E.A.
    Improving the quality of route generation in SUMO based on data from detectors using reinforcement learning
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 137-146

    This work provides a new approach for constructing high-precision routes based on data from transport detectors inside the SUMO traffic modeling package. Existing tools such as flowrouter and routeSampler have a number of disadvantages, such as the lack of interaction with the network in the process of building routes. Our rlRouter uses multi-agent reinforcement learning (MARL), where the agents are incoming lanes and the environment is the road network. By performing actions to launch vehicles, agents receive a reward for matching data from transport detectors. Parameter Sharing DQN with the LSTM backbone of the Q-function was used as an algorithm for multi-agent reinforcement learning.

    Since the rlRouter is trained inside the SUMO simulation, it can restore routes better by taking into account the interaction of vehicles within the network with each other and with the network infrastructure. We have modeled diverse traffic situations on three different junctions in order to compare the performance of SUMO’s routers with the rlRouter. We used Mean Absoluter Error (MAE) as the measure of the deviation from both cumulative detectors and routes data. The rlRouter achieved the highest compliance with the data from the detectors. We also found that by maximizing the reward for matching detectors, the resulting routes also get closer to the real ones. Despite the fact that the routes recovered using rlRouter are superior to the routes obtained using SUMO tools, they do not fully correspond to the real ones, due to the natural limitations of induction-loop detectors. To achieve more plausible routes, it is necessary to equip junctions with other types of transport counters, for example, camera detectors.

  10. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

    Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.